Промышленная технология производства катализатора дегидрирования изоамиленов в изопрен марки КИМ-1
Одним из основных направлений развития химической промышленности является создание мощного современного производства пластических масс и каучуков. Особо важное значение приобретают мономеры, одним из которых является изопрен.
В настоящие время известно несколько способов синтеза изопрена. В целом в промышленности внедрены два метода:
синтез изопрена из формальдегида и изобутилена;
двух стадийное дегидрирование изопентана в изоамилены и далее в изопрен.
Оба метода реализованы на ОАО «Нижнекамскнефтехим».
Вторая стадия каталитического дегидрирования изоамиленов в изопрен ранее осуществлялась в присутствии катализатора марки КИМ-1. Производителем катализатора являлся завод «Окиси этилена» (цех № 2410) Нижнекамского нефтехимического комбината. Катализатор характеризовался хорошими эксплуатационными показателями, достаточной активностью и селективностью, высокой механической прочностью.
В данной работе на проектирование представлена промышленная технология производства катализатора дегидрирования изоамиленов в изопрен марки КИМ-1 в присутствии водяного пара в адиабатических реакторах с неподвижным слоем катализатора на заводе СК.
Катализатор дегидрирования КИМ-1 производится на территории цеха № 2410 завода «Окиси этилена» ОАО «Нижнекамскнефтехим». В целях уменьшения капитальных затрат при проектировании для производства катализатора КИМ-1 предусматривается максимально возможное использование существующего технологического оборудования, применяемого ранее для производства катализатора ИМ-603, с сохранением его обвязки технологическими трубопроводами. Процесс производства катализатора дегидрирования КИМ-1 является периодическим. Количество технологических потоков - два.
1. Характеристика сырья и готовой продукции
1.1. Характеристики производимой продукции
Таблица 1.1 - Характеристики производимой продукции
№ п/п | Наименование изготовляемой продукции | Номер ГОСТ, ТУ, регламент | Показатели качества, обязательные для проверки | Регламентируемые показатели с допустимыми отклонениями |
1 | Готовый катализатор КИМ-1 | ТУ 2173-002-12988979-95 | - внешний вид - размер гранул, мм длина диаметр - насыпная плотность г/см³ не менее -механическая прочность, %, не менее кг/гранулу, не менее - каталитические свойства выход изопрена на пропущенные изоамилены, % мас, не менее выход изопрена на разложенные изоамилены, % мас, не менее - однородность: массовая доля комков, представляющих слепки более чем трех гранул, %, не более массовая доля пыли размером менее 1 мм, %, не более | гранулы красно-коричневого цвета 3-20 3.0-4.0 0.95 96,0 10 35,0 85,0 4,0 1,0 |
1.2 Характеристика сырья, материалов, реагентов, полупродуктов
Таблица 1.2- Характеристика сырья
№ п/п | Наименование сырья, материалов, катализатора, изготовляемой продукции | Номер ГОСТ, ТУ, регламент | Показатели качества, обязательные для проверки | Регламентируемые показатели | ||||
1 | 2 | 3 | 4 | 5 | ||||
1 | Пигмент желтый железо-оксидный | ТУ 38. 503286-91 или ГОСТ 1817.2-80 | массовая доля - железа в пересчете на Fe2O3, %, не менее - ионов натрия в пересчете на Na2CO3, %, не более - хлоридов, %, не более | 84,0 0,007 0,01 | ||||
2 | Калий углекислый технический 1 сорт | ГОСТ 10690-73 | массовая доля - К2СО3, %, не менее - ионов натрия в пересчете на Na2CO3, %, не более -хлоридов, %, не более | 98,0 0,6 0,05 | ||||
3 | Циркония двуокись сорт 2 | ГОСТ 21907-76 | Содержание суммы двуокисей циркония и гафния, %, не менее | 99,0 | ||||
4 | Хрома окись техническая ОХП-1,ОХП-2 | ГОСТ 2912-79 | массовая доля - общего хрома в пересчете на Cr 2 O3, %, не менее | 99,0 | ||||
5 | Калия гидрат окиси технический марки ОКП 21, сорт высший | ГОСТ 9285-78 | массовая доля - едких щелочей в пересчете КОН,%, не менее - натрия в пересчете на NaOH, %, не более | 98,0 1,5 | ||||
6 | Оксид алюминия активный | ТУ 38. 10216-78 или ГОСТ 8136-85 | массовая доля - натрия в пересчете на оксид натрия,%, не более | 0,025 | ||||
7 | Силикагель технический марки КСМГ сорт высший или сажа белая марки БС-120 | ГОСТ 3956-76 ГОСТ 18307-78 | По паспорту поставщика По паспорту поставщика |
| ||||
8 | Вода обессоленная 3 ступени очистки (спец очищенная) | Требования регламента | содержание - хлор ионов, мг/л, не более - ионов натрия, мг/л, не более | 3,0 1,0 |
| |||
9 | Топливный газ | Требования регламента | Теплотворная способность, ккал/Вм³, не менее | 8000 |
| |||
10 | Воздух технологический | ГОСТ 24484-80 | - температура точки росы | - 60С |
| |||
11 | Азот газообразный технический, повышенной чистоты, 2 сорт | ГОСТ 9293-74 | объемная доля - азота, %, не менее - кислорода, %, не более | 99,95 0,05 |
| |||
1.3 Физико-химические свойства сырьевых компонентов (1-8)
В качестве сырья для производства экспериментального железо-оксидного катализатора синтеза изопрена дегидрированием изоамиленов используются следующие сырьевые компоненты:
Пигмент железо-оксидный – порошок желтого цвета, молекулярный вес 159,69, а.е., температура плавления – 1565°С, в воде не растворим.
Калий углекислый – порошок белого цвета, молекулярный вес 138 а.е., температура плавления -891°С, в воде растворим.
Циркония двуокись – порошок белого цвета или сероватым с желтоватым оттенком, молекулярный вес 123 а.е., температура плавления -2680 °С, в воде не растворим.
Хрома окись – порошок темно – зеленого цвета, молекулярный вес 152 а.е., температура плавления -2275°С в воде не растворим.
Гидроксид калия – чешуйки зеленого, сиреневого или серого цвета, молекулярный вес 56 а.е., температура плавления- 380°С.
Оксид алюминия – гранулы белого цвета, молекулярный вес 102 а.е., температура плавления
Сажа белая – порошок белого цвета.
1.4 Термодинамические свойства сырьевых компонентов
Таблица 1.3 - Термодинамические свойства сырьевых компонентов
Название компонентов | Теплоемкость, Дж/(моль×К) | Энтропия, Дж/(моль×К) | Тепловой эффект, кДж/моль |
Пигмент желтый железо-оксидный | 104.6 | 90.00 | 822.1 |
Окись хрома | 113,8 | 81,1 | 1128,4 |
Двуокись циркония | 56,5 | 50,34 | 1080,31 |
Калий углекислый | 115,7 | 156,3 | 1146,1 |
Оксид алюминия | 79 | 50,92 | 1669,8 |
Гидроксид калия | 65,60 | 59,41 | 425,34 |
Сажа белая | 859,4 | 41,9 | 859,4 |
1.5 Физико-химические характеристики конечного продукта
Катализатор дегидрирования КИМ-1 представляет собой железо-калиевую оксидную систему, промотированную оксидами металлов. Имеет следующий химический состав:
Fe2O3-53.5 %, Cr2O3-3,8%, ZrO2-3,0%, K2CO3-31,1%, AI2O3-1,75 %, KOH-2,3%, сажа белая-4,6%.
2. Физико-химические основы технологического процесса
Процесс двух стадийного дегидрирования изопентана в изопрен является вторым, после синтеза изобутилена и формальдегида, промышленным методом синтеза изопрена, разработанным и внедренным в России (9,10).
Сущность процесса двух стадийного дегидрирования изопентана состоит в последовательном превращении изопентана в изоамилены, а смеси последних – в изопрен. На практике эти операции осуществляются в различных условиях, на разных катализаторах и самостоятельных технологических установках.
Схема основных и побочных химических превращений, протекающих при дегидрировании изопентана и изоамиленов (11):
(2.1)
Вопрос о фазовом составе промотированных железно-оксидных катализаторов, находящихся в атмосфере паров углеводородов и воды при температурах 770-870 К, является ключевым для определения механизма реакции дегидрирования, протекающей на этих контактах, разработки научно обоснованных методов синтеза данного класса катализаторов,оптимизации технологических процессов. Эта проблема привлекает пристальное внимание исследователей с момента появления первых железо-оксидных катализаторов, промотированных оксидами калия и хрома (12).
Одной из первых попыток исследования фазового состава железохрокалиевого катализатора в условиях разработки и дегидрирования в присутствии водяного пара явились работы советских ученых (13-16). Для интерпретации фазового состава катализатора,выяснение природы его каталитической активности и роли отдельных компонентов авторы (13,14) методами рентгенофазового, термографического анализа и ИК спектроскопии изучили поведение индивидуальных компонентов, а также их двойных и тройных композиций в условиях окислительной и восстановительной сред, при разогреве до температуры реакции и охлаждении катализатора. Используя высокотемпературную рентгеновскую камеру, исследователи изучили фазовый состав железохромкалиевого катализатора в условиях реакции дегидрирования олефинов и установили,что фазовый состав контакта при комнатной и в условиях реакции существенно различается. Авторы работ (13,15) убедительно показали, что индивидуальный карбонат калия не активен в реакции дегидрирования, индивидуальный оксид железа - основной компонент катализатора – в начальный момент режима дегидрирования имеет достаточно высокую активность однако, через 10-15 мин. Работы происходит быстрое снижение степени превращения и избирательности процесса, обусловленное зауглероживанием поверхности.
Система в режиме дегидрирования не теряет активности и по своей селективности приближается к катализатору. Высокую и стационарную активность этой двойной системы, по мнению авторов (15), можно объяснить только образованием феррита калия. Отсюда был сделан вывод, что высокая каталитическая активностью обусловлена образованием на поверхности глобул оксида железа слоя монофиррита калия или твердого раствора хрома и кремния в решетке этого феррита . Изложенная точка зрения поддерживается и в более поздних публикациях
Следует отметить, что в выводах авторов работ (13-19) о составе каталитически активной фазы железо-оксидного катализатора содержится ряд существенных противоречий. Во-первых, предусматривается, что большая часть основного активного компонента – оксида железа – выключена из каталитического процесса. По мнению авторов (15), соотношение Fe:К в образе таково, что значительная часть оксида железа не взаимодействуют с карбонатом калия и в условиях реакции переходит в момент, однако, если магнетит и доступен для реагирующих молекул, то он быстро зауглероживается. Приняв описанную модель, можно заключить, что нет смысла вводить в катализатор более 70% , или что оксид железа, находясь в центре глобулы, выполняет только функцию носителя. Во-вторых, вызывает сомнение тот факт, что моноферрит калия или твердый раствор кремния и хрома в решетке моноферита калия может обеспечить высокую конверсию и селективность процесса дегидрирования. По данным работы (20) выход стирола при использовании в качестве катализатора чистого моноферита калия не превышает 20%, а удельная скорость образования стирола на таком контакте (молярное отношение Fe:К = 1) в 4 раза ниже, чем на ферритной системе с молярным отношением Fe: К= 4, обладающей практически одинаковой структурой пор. Кроме того, железо, находящееся в соединении в степени окисления +3 не может обеспечить высокую селективность процесса дегидрирования (21).
К наиболее важным выводам авторов работ (15,16) относится заключение о том, что формирование активной фазы происходит при восстановлении катализатора.
Таким образом, вопрос о составе активной фазы промотированных железо-оксидных контактов остается открытым. В связи с этим представляется целесообразным изложение основных точек зрения на природу промотирующего действия оксида калия, вводимого в значительных количествах в катализаторы дегидрирования. Эти данные по-видимому, могут служить основной для более четких представлений о составе каталитически активной фазы и механизме ее действия:
Авторы (22,23) считают, что присутствие К2О или кластера на поверхности или в объеме оксида железа приводит к образованию высоко ионизированного центра в преимущественно ковалентном оксиде железа. Этот высоко ионизированный центр способствует созданию локализованного электростатического поля с последующей поляризацией окружающих связей, что приводит к ослаблению связей Fe-O, расположенных рядом с . В конечном итоге присутствие щелочного промотора увеличивает активность железо-оксидных систем, т.к. каталитический процесс включает разрыв связей Fe-О на определенной, возможно, лимитирующей стадии реакции дегидрирования. По мнению китайских ученых (24,25) активный центр представляет собой кластер, состоящий из одного атома калия, двух атомов железа и одного- кислорода. Присутствие калия повышает концентрацию активных центров.
Добавки калия, изменяя энергию связи кислорода в решетке каталитически активных оксидов железа, при определенных условиях уменьшают энергию активации каталитического окисления углеродистых отложений, образующихся в процессе дегидрирования (15,16,26), обеспечивают само регенерацию контакта.
Калий понижает кислотность катализатора, добавляя побочные реакции (25).
Добавки калия способствуют восстановлению железо-оксидного катализатора до определенной степени (21), стабилизирует активную фазу(25).
Анализ литературных данных позволяет сформулировать некоторые предложения о составе активной фазы промотированного железо-оксидного катализатора в условиях реакции дегидрирования:
Каталитически активная фаза представляет собой сложный оксид в состав которого входят железо и калий в соотношении, близком к их общему соотношению в контакте. Другие компоненты катализатора могут входить в состав этого соединения, образуя твердые растворы. Устойчивая работа контакта обеспечивается равномерным распределением компонентов по грануле катализатора, что возможно при наиболее полном взаимодействии исходных веществ (27,28).
Это соединение после микровостановления должно удовлетворять определенным условиям в отношении таких факторов, как геометрическая структура, электронное строение, энергетическое состояние, удовлетворять условиям преобразования валентного состояния ионов железа, обладать шпинельной структурой (25).
Формирование активной фазы происходит при восстановлении катализатора. При устанавливается оптимальное соотношение которое остается практически постоянным в атмосфере, где парциальное давление кислорода определяется соотношением углеводород- водяной пар и температурой.
Катализатор дегидрирования КИМ-1 представляет собой сложную многофазную систему на основе оксидов железа, содержащую в небольших количествах оксида хрома, циркония, алюминия и соединение калия. В основе технологии лежит процесс получения катализаторов методом мокрого смешения с последующим формированием активной фазы путем высокотемпературной обработки исходных соединений.
В качестве исходных компонентов используются оксид железа, хрома, алюминия, циркония и карбонат калия. Все компоненты катализатора последовательно смешиваются в водной суспензии. Химические процессы на стадии смешения не протекают.
Для связывания катализаторной массы с целью придания механической прочности катализатору добавляют жидкое стекло.
Водная суспензия катализаторной смеси упаривается для удаления избыточной воды и перевода смеси в пастообразную форму пригодную для гранулирования.
Полученная катализаторная паста формуется с помощью гранулятора в «червяки», из которых затем в процессе сушки удаляется физически адсорбированная вода. Высушенные гранулы катализатора далее подвергаются высокотемпературной обработке в специальных активаторах или печах.
В процессе высокотемпературной обработки при температурах выше 600 °С в объеме катализатора происходит разложение углекислого калия и взаимодействие оксидов между собой с образованием ферритов Ме , где Ме – это сумма катионов металла К,Cr,Аl.
Готовый катализатор КИМ-1 имеет следующий химический состав: Fe2O3-53,5%, Cr2O3-3,8%, ZrO2-3,0%, K2CO3-31,1%, AI2O3-1,7%, KOH-2,3%, сажа белая-4,6%.
Выход готового катализатора составляет 275 т. в год, 25т. в месяц.
Отходами производства являются катализаторная пыль, сколы и крошки.
3. Описание технологического процесса и технологической схемы производственного объекта
В процессе производства катализатора КИМ-1 исходные компоненты, взятые в виде оксидов железа, хрома, циркония, алюминия и карбоната калия, смешиваются в водной среде.
Для связывания катализаторной массы с целью придания механической прочности катализатору в смеситель 4 добавляют жидкое стекло.
При последующей термической обработке катализатора происходит разложение углекислого калия и взаимодействие оксидов между собой с образованием ферритов.
Процесс получения катализатора КИМ-1 состоит из следующих операций:
- подготовки исходных компонентов;
- приготовление катализаторной смеси;
- приготовление жидкого стекла;
- получение катализаторной массы и формовки;
- активации катализатора.
3.1 Подготовка исходных компонентов
Мешки с желтым железо-окисным пигментом и углекислым калием складывают на поддоны. Эти поддоны при помощи электрической тали 1 поднимают на отметку 19.200 для загрузки в реактор 2.
Оксид хрома, двуокись циркония, активный оксид алюминия после размола в дисмембраторе 13 взвешивают на весах, затем поднимают на отметку 19.200 электрической талью 1 для загрузки в реактор 2.
3.2 Приготовление катализаторной смеси
Приготовлении водной суспензии компонентов и гидротермальная обработка происходит в реакторе 2 с якорной мешалкой и рубашкой для обогрева паром.. В реактор 2 заливают 1,5 куб/м. Обессоленной воды, включается мешалка и через загрузочный люк засыпают расчетное количество углекислого калия и перемешивают в течении 30 мин. С одновременным нагреванием раствора до подачей пара с давлением 5 кгс/ в рубашку. При достижении температуры 80- С через загрузочный люк засыпают расчетное количество желтого железо-оксидного пигмента и проводят термообработку в течении 7 часов. Вниз реактора 2 подается технологический воздух для предотвращения отложения осадков. После термообработки в реактор 2 засыпают расчетное количество активной окиси алюминия, окиси хрома, двуокиси циркония и доливают обессоленной воды до 2. После 1 часа перемешивание полученной катализаторной смеси производят отбор пробы суспензии на ее химический состав. При положительных результатах химического анализа осуществляют процесс получения катализаторной массы.
3.3 Приготовление жидкого стекла
Приготовление жидкого стекла осуществляется в реакторе 3 с мешалкой и рубашкой для обогрева паром. В реактор 3 принимают расчетное количество обессоленной воды.
Через загрузочный люк реактора 3 при перемешивании засыпают расчетное количество гидрата окиси калия и подогревают раствор путем подачи водяного пара в рубашку реактора. Перемешивание производится в течении 1 часа. После чего в реактор 3 загружают расчетное количество силикагеля или белой в несколько приемов. Приготовление жидкого стекла производится при растворении и перемешивании компонентов в течении 6 часов при температуре С. После естественного охлаждения жидкого стекла до температуры С, отбирают анализ для определения силикатного модуля.
При удовлетворительных анализах жидкое стекло используют при производстве катализатора КИМ-1, как связывающее вещество.
3.4Получение катализаторной массы
Процесс получения катализаторной массы производится путем упаривания катализаторной смеси, т.е. отгонки из нее воды и углекислого газа подачей пара в рубашку смесителя 4. Готовую суспензию из реактора 2 через нижний штуцер по стационарной линии подают в роторные смесители 4.
В указанных смесителях протекает дальнейшее перемешивание реакционной смеси с одновременной упаковкой сгущающейся массы. Пары воды и углекислый газ выходят из отверстий в крышках смесителей 4 отсасывается вентилятором 17 в атмосферу через промежуточный сборник конденсата 18. За один час до готовности массы к формовке в смеситель 4 подают расчетное количество жидкого стекла. Готовность каталитической массы к формовке определяется визуально. Проверка производится только при отключенном электродвигателе. Полученная масса в смесителе с влажностью 20-30% путем опрокидывания смесителя выгружается на ленточные транспортеры 5. С транспортеров катализаторная масса поступает в приемный бункер гранулятора типа ПФШ-150 5,где при охлаждении камеры формователя промышленной водой происходит формование катализаторной массы в «червяки» диаметром 3,6-4 мм. Образующийся червяк указанного диаметра ссыпается на маятниковые транспортеры 7. С указанных транспортеров «червяк» укладывается на транспортеры сушилок 8, на которых проходя 6 секций сушилок подвергается сушке. Сушка «червяков» происходит в токе подогретого воздуха при температуре 90-С до влажности не больше 10 %.
Процесс сушки регулируют подачей пара, подаваемого на калориферы сушилок. Воздух в сушилку поступает от вентиляторов 19,20 через калориферы 21, обогреваемые паром давления 0,5 Мпа. Из сушилок 8 воздух с парами воды отсасывается вентиляторами 31,32 и сбрасывается в атмосферу.
Высушенные «червяки» после сушилок 8 накапливают в бункерах 9, откуда выгружают в контейнеры 10. Контейнеры 10 с сухим «червяком» перевозят электропогрузчиками и помощью электротали 11 загружают в активатор 12 через загрузочный люк.
3.5 Активация катализатора
Активацию катализатора проводят горячим воздухом, подогреваемым в печи 22. Активацию катализатора производят путем при температуре 645-С в течении 8 часов. Температурный режим активации представлен на графике ведения активации. Подъем температуры ведут со скоростью 50-С/час. При достижении температуры С производят выдержку катализатора в течении 2-х чесов с целью уравнивания температуры в слое катализатора, после чего подъем температуры ведут со скоростью 30-С/час до температуры 645-С. Расход горячего воздуха составляет 2000-2500/час. После окончания процесса активации катализатор охлаждают азотом до температуры С, после чего охлаждение катализатора продолжают холодным технологическим воздухом.
Продолжительность процесса охлаждения катализатора лимитируется расходом азота и воздуха. Расход азота составляет 300/час, технологического воздуха-2000/час. После охлаждения до С прекращают подачу технологического воздуха и катализатор выгружают по течке 200-литровые металлические бочки с полиэтиленовыми вкладышами. В течке происходит рассев катализатора от сколов, мелких частиц и отсос пыли. Сколы катализатора поступают в контейнер 10. Воздух из течки с примесью катализаторной пыли подается вентилятор от 23 для очистки от пыли в циклон 24, а после очистки выбрасывается в атмосферу. Воздух из активатора 12 подается для очистки от катализаторной пыли в циклон 25, а затем выбрасывается в атмосферу. Пыль из циклонов 24,25 собирается в контейнеры 10. Отходы катализатора: мелкие частицы, сколы катализатора загружаются в бункер 28, откуда поступает на размол на мельницу 29. После размола порошок поступает в бункер 30, а из него выгружается в контейнеры 10 и вместе с катализаторной пылью из циклонов возвращается в производство.
4. Расчетная часть
4.1 Материальный баланс производства железо-оксидного катализатора дегидрирования КИМ-1
Таблица 4.1 - Материальный баланс железо-оксидного катализатора
Наименование сырья, продуктов, отходов | Наименование стадии производства катализатора, кг на 1 т сырья | |
Приготовление катализаторной смеси (реактор 2) | ||
Приход на операцию | Получено на операции | |
Пигмент железоокисный | 634 | 634 |
Калий углекислый | 304 | 304 |
Циркония двуокись | 20 | 20 |
Окись хрома | 31 | 31 |
Гидрат калия | - | - |
Оксид алюминия | 11 | 11 |
Обессоленная вода | 2000 | 1960 |
Сажа белая | - | - |
Жидкое стекло | - | - |
Пары обессоленной воды | - | 40 |
Гидроксильная вода, СО2 | - | - |
Сколы, пыль | - | - |
Катализатор | - | - |
Итого | 3000 | 3000 |
4.2 Нормы технологического режима, метрологическое обеспечение и расходные нормы
Таблица 4.2 - Нормы технологического режима
№ п/п | Наименование стадий процесса, аппарата. Показатели режима | Номер позиции на схеме | Ед. измере-ния | Допускаемые пределы технологических параметров | Требуемый класс точности изм. приборов ГОСТ 8410-10 | Примечание | |
1 | 2 | 3 | 4 | 5 | 6 | 7 |
|
1 | Приготовление катализаторной смеси в реакторе 2 - количество желтого железо-оксидного пигмента -количество углекислого калия - количество оксида хрома - количество двуокиси циркония - количество активного оксида алюминия -количество обессоленной воды -общее время перемешивания суспензии - температура | Весы 0-500 Весы 0-500 Весы 0-500 Весы 0-50 Весы 0-50 810 | кг кг кг кг кг м³ час ° С | 780 340 36 12 16 2,0 не менее 7 80-100 | IV IV III III ІII 1.5 1.0 | Количество загружаемого сырья может меняться в зависимости от содержания в них основного вещества По расходомеру на вводе обессоленной воды в цех |
|
2 | Приготовление жидкого стекла в реакторе 3 - количество обессоленной воды - количество гидрата окиси калия - количество силикагеля или белой сажи | 513 вес вес | м3 кг кг | 0.6 175 335 | 1,0 1У 1У | Уровнемер Количество загружаемого сырья может манятся в зависеиости |
|
-общее время перемещения -температура растворения | 809 0-120 | час ºС | 7 не выше 100 | 2,5 | от содержания в нем основного вещества |
| |
- удельный вес жидкого стекла - силикатный модуль жидкого стекла | г/см³ | 1,3-1,4 2,8-3,2 | Ареометром Титрометрически методом |
| |||
3 | Получение катализаторной массы, формовка, сушка. Получение катализаторной массы в смесителе 4-количество суспензии-продолжительность упаривания -общее время перемешивания -количество жидкого стекла -влажность катализаторной массы –формовка катализаторной массы в грануляторе 6. –диаметр червяков -сушка червяков в сушке 8. –температура нагретого воздуха после калорифера 21 -на входе в сушилки 8 –влажность катализаторной массы после | 805 806 | м³ час час кг % мм ºС ºС | 0,3 до готовности катализаторной массы к формовке 15 20-30 3,6-4,0 90-120 90-120 | 1,0 1,0 | визуально мерник визуально |
|
сушилки 8. | % масс. | н/б 10 | Определяется весовым методом |
| |||
4 | Активация катализатора в активаторе 12 - температура активации - время выдержки Каталитические свойства катализатора: - выход изопрена на пропущенные изоамилены - выход изопрена на разложенные изоамилены | 715 0-900 | ° С час % масс. % масс. | 645-655 8 не менее 35 не менее 85 | 1,0 | На испытательной установке тестирования. |
|
4.3 Нормы расхода сырья, материалов, энергоресурсов на выпуск 1 т железо-оксидного катализатора дегидрирования КИМ-1
оксидный катализатор изопрен
Таблица 4.3 - Нормы расхода сырья, материалов и энергоресурсов