Ссылка на архив

Практическое применение интерполирования гладких функций

1. Постановка задачи интерполяции

1.1 Определение термина интерполяции

1.2 Как выбрать интерполянт

1.3 Полиноминальная интерполяция

1.4 Интерполяционный полином Лагранжа

1.5 Про погрешность полинома

2. Один вид обобщенной интерполяции

2.1 Обобщенная интерполяция

2.2 Важное представление гладкой функции

Заключение

Список использованной литературы


Такие функции строятся на основе комбинаций из элементарных функций.

(2) ,

– фиксированная линейно- независимая система, а  () - пока неизвестные параметры.

Математическая постановка задачи интерполирования заключается в следующем. Пусть R - пространство действительных функций, определенных на отрезке (a,b), и  - заданная конечная или счетная система функций из R, такая, что их любая конечная подсистема является линейно-независимой. Для данной конечной совокупности точек x1, x2, …, xn (xi ≠ xj при i≠j), принадлежащих отрезку (a,b), и данной функции f(x) из R найти функцию φ, являющуюся линейной комбинацией функций  так, чтобы в заданных точках значения f и φ совпадали. Другими словами, определить константы a1, a2, …, an так, чтобы

(3)  ()

Совершенно ясно, почему число коэффициентов  должно совпадать с числом узлов интерполяции xi. Это нужно для того, чтобы матрица системы была квадратной (т.е. число неизвестных совпадало бы с числом условий, из которых находятся эти неизвестные). Кроме того, для однозначной разрешимости данной системы (при произвольной правой части) необходимо и достаточно, чтобы ее определитель был отличен от нуля, т.е.:

:

Естественно, интерполянт необходимо построить в виде более легкой учетной функции, поэтому за часто берут такие системы как:

{1, х, х2, …, хn}, {1, sinx, cosx, sin2x, cos2x, …, sin(nx), cos(nx)} ,

{1, e xb1, e xb2, …, e xbn} (bi ÎR, bi≠bj (i≠j), nÎN).

Задача 1.

Пусть задана интерполяционная таблица:

i0123

0235

1325

Построить интерполяционный полином Лагранжа.

Решение. Из (8) следует:

Задача 2.

Пользуясь интерполяционной формулой Лагранжа, составить уравнение прямой, проходящей через точки Р00, у0) и Р11, у1), если х0=-1, у0=-3, х1=2, у1=4.

Решение. В данном случае многочлен Лагранжа примет вид

.

Уравнение искомой прямой есть .


По строению  (). Но, в общем, это не так и  (,), так как интерполирование предполагает приближенное нахождение:

 ()

И в связи с этим необходимо говорить о погрешности интерполирования. Заранее сказав,  разность этого выражения нужно найти.

Замечание 1.

 ()

чем постоянно записывать равенство, слагаемое  называют остаточным членом (или погрешность интерполяции).

Теорема 1.

Если  (a,b) (2)

(9)  (,), где


 (a,b) в промежутке беспрерывно n+1 раз объясняет совокупность дифференцируемых функций.

 (a,b) ó(a,b);

Берем любую точку и зафиксируем ее (,), рассмотрим вспомогательную функцию:

(10) , ().

 - свободный параметр, который открыто объясняет  ().

Значение  берем проходящим через равенство . В это время концы , будучи точками промежутка, можно использовать теорему Ролля.

Существует :  ()

Сейчас для этой теоремы берем точки :

Существует :  ()

Когда закончим этот процесс, то получим следующее:

$:

Итак, при t = x из (10) вытекает (9). Что и требовалось доказать.

Следствие 1:

Пусть .

В то время  (); над ними: .

Задача 3:

С помощью узлов построить полином для этой функции, при:

1) . Оценить погрешность полинома;

2) в (a,b) найти максимальную погрешность полинома.

Решение:

1) На основании Следствия 1 в непрерывном виде находим:

 2) Использовав второе равенство из Следствия 1 получаем:

.

Замечание 2:

Полученные с помощью этой формулы множества полиномов называются полиномами Чебышева. В отдельных случаях:

В теории приближения функции хорошо известен следующий факт: если в качестве узлов интерполяции взять корни полинома , то  ()

В этом случае из Следствия 1 следует, что

. Если свободная интерполяция находится в отрезке (a,b), то с помощью замены  этот отрезок можно заменить на (-1;1). В это время точки

(11)  (, )

будут однородными с корнями , а остаточный член записывается следующим образом:

.

Последнее неравенство полностью дает оптимальную оценку на отрезке (a,b), т.е. мы оцениваем погрешность интерполяции на отрезке (a,b), чтобы узлы (11) были оптимальными.


2.1 Обобщенная интерполяция

Рассмотрим пример интерполяции для элементов множества . Для простоты и краткости возьмем (a,b)=(-1;1), .

Пусть точки  и  будут разными между собой. Поставим такую задачу:

(12)

построить многочлен , удовлетворяющий данным условиям. Здесь  «собственный» оператор класса :

Теорема 2.

Если взять в произвольной форме fÎC{m;0}, удовлетворяющее условию (12), то существует «обобщенный» интерполяционный полином и он единственен.

Доказательство:

Найдем интерполяционный полином в стандартном виде:


(13)

Затем, учитывая (13) для того, чтобы найти коэффициенты  (), приходим к следующей алгебраической системе:

(14)

Эту систему упорядочим в матрицу S, являющуюся прямой суммой двух квадратных матриц размерностью m и n+1.

Здесь

Значит, основываясь на фактах линейной алгебры, определяем

Что и требовалось доказать.

Сейчас поставим перед собой цель записать многочлен G(x) в явном виде. Будет полезно рассмотреть стандартный вид многочлена Лагранжа. Из (13) видно, что

Поэтому имеет место следующее:

(14)

Возьмем параметры из (13):

(15)

Таким образом, из (13), (14), (15) следует, что

(16)

Замечание 3:

Если m=0, C{0;0}C(-1;1),  (). Значит, рассмотрев функцию  в задаче (11) приводится к обычной интерполяционной задаче, а многочлен Лагранжа (16) превращается в обычный интерполяционный многочлен. Таким образом, задача (11), действительно, в значении одного определения становится обобщенной задачей интерполирования.

Сейчас поговорим о погрешности обобщенной интерполяции.

В этом случае  нужно дать оценку побольше. Выше приведены размышления и следствия, полученные в целях определения одной системы функций.

.

Теорема 3.

Если

Здесь

Доказательство:

Приняв во внимание (16) получаем

(17)

Следующие приведения к формуле теоремы легко доказываются из (17) и теоремы 1.

Следствие 2.

Пусть

В это время:


Теорема 4.

Верна следующая связь:

(18)

Вдобавок

(19)

Доказательство:

Пусть . По (19) получим  в последовательной форме используем метод интегрирования по частям, и изменяем его:

Отсюда выходит следующее неравенство:


(20)

называют формулой Тейлора с остаточным членом в интегральной форме.

Возьмем некоторую функцию , чтобы равенство (18) было правильным . При рассмотрении второго слагаемого полинома, достаточно показать что Î С(m).

При изучении производной  полезно использовать дифференцирование интеграла, зависящего от параметра. Эта формула в математическом анализе очень известна и определяет следующее:

(21)

здесь  вдобавок

Таким образом, находим в нашем случае необходимый вид:

Значит .

Замечание 6.

Рассмотрев, оператор  из последнего размышления вытекает полезное рассуждение:

(22)


1. Н.С.Габбасов. Некоторые применения производной. Наб.Челны, 1998г.

2. Я.С.Бугров, С.М.Никольский. Дифференциальное и интегральное исчисление. М.: «Наука», 1984г.

3. С.М.Никольский. Курс математического анализа. М.: «Наука», 1990г.

4. Л.Д.Кудрявцев. Краткий курс математического анализа. М.: «Наука», 1989г.

5. И.А.Марон. Дифференциальное и интегральное исчисление. М.: «Наука», 1970г.

6. А.А.Самарский. Введение в численные методы. М.: «Наука», 1987.



ерполяционного полинома Лагранжа, по оцениванию погрешности интерполяционного полинома.

В нашем случае для более полного раскрытия данной темы подробно проиллюстрировано само понятие интерполяции, далее интерполирование непосредственно гладкой функции и интерполирование гладкой функции в точке.


1. Н.С.Габбасов. Некоторые применения производной. Наб.Челны, 1998г.

2. Я.С.Бугров, С.М.Никольский. Дифференциальное и интегральное исчисление. М.: «Наука», 1984г.

3. С.М.Никольский. Курс математического анализа. М.: «Наука», 1990г.

4. Л.Д.Кудрявцев. Краткий курс математического анализа. М.: «Наука», 1989г.

5. И.А.Марон. Дифференциальное и интегральное исчисление. М.: «Наука», 1970г.

6. А.А.Самарский. Введение в численные методы. М.: «Наука», 1987.