Ссылка на архив

Повышение эффективности потребления энергии жилыми и общественными зданиями

Министерство образования Республики Беларусь

Белорусский Государственный Экономический Университет

Реферат

Повышение эффективности потребления энергии жилыми и общественными зданиями

Минск 2003


БЫТОВОЕ ЭНЕРГОСБЕРЕЖЕНИЕ

Энергосбережение при освещении зданий

В настоящее время около 40 % генерируемой в мире электрической энергии и 37 % всех электрических ресурсов используется в жилых и общественных зданиях. Существенную долю (40-60 %) в энергопотреблении зданий составляет энергии на освещение. Сокращение расхода электроэнергии на эти цели возможно двумя основными путями:

- снижением номинальной мощности освещения;

- уменьшением времени использования светильников.

Снижение номинальной (установленной) мощности освещения в первую очередь означает переход к более эффективным источника света, дающим нужные потоки при существенно меньшим энергопотреблении. Такими источниками могут быть компактные люминесцентные лампы. В общественных зданиях также можно применять более эффективные светильники.

Уменьшение времени использования светильников достигается внедрением современных систем управления, регулирования и контроля осветительных установок. Применение регулируемыхлюминесцентных светильников позволяет эксплуатировать их при сниженной (по сравнению с номинальной) мощности. А это значит, что при неизменной установленной мощности освещения снижается фактически потребляемая мощность и энергопотребление.

Управление осветительной нагрузкой осуществляется двумя основными способами:

- отключением всех или части светильников (дискретное управление);

- плавным изменением мощности светильников (одинаковым для всех или индивидуальным).

К системам дискретного управления, в первую очередь, относят различные фотореле (фотоавтоматы) и таймеры. Принцип действия первых основан на включении и отключении нагрузки по сигналам датчика наружной естественной освещенности. Вторые осуществляют коммутацию осветительной нагрузки в зависимости от времени суток по предварительно заложенной программе. К системам дискретного управления освещения относятся также автоматы, оснащенные датчиками присутствия. Они отключают светильники в помещении спустя заданный промежуток времени после того, как из его удаляется последний человек. Это наиболее экономичный вид систем дискретного управления, однако к побочным эффектам их использования относится возможное сокращение срока службы ламп за счет частых включений и выключений. Также широко используются системы плавного регулирования мощности освещения.

В последнее десятилетие многими зарубежными фирмами освоено производство оборудования для автоматизации управления внутренним освещением. Современные системы сочетают в себе значительные возможности экономии электроэнергии с максимальным удобством для пользователей.

Системы автоматического управления освещением можно разделить на два основных класса: локальные и централизованные.

Локальные системы управления освещением помещений представляют собой блоки, размещаемые за полостями подвесных потолков или конструктивно встраиваемые в электрораспределительные щиты. Системы этого типа, как правило, осуществляют одну функцию либо их фиксированный набор. В число этих функций входит, например, учет присутствия людей и уровня естественной освещенности в помещении, а также работа с системами беспроводного дистанционного управления. Локальные «системы управления светильниками» в большинстве случаев не требует дополнительной проводки, а иногда даже сокращают необходимость в прокладке проводов. Конструктивно они выполняется в малогабаритных корпусах, закрепляемых непосредственно на светильниках или на колбе одной из ламп.

Централизованные системы управления освещением, наиболее полно отвечающие названию «интеллектуальных», строятся на основе микропроцессоров, обеспечивающих возможность практически одновременного многовариантного управления значительным (до нескольких сотен) числом светильников. Такие системы могут применяться либо для управления освещением, либо также и для взаимодействия с другими системами зданий (например, с телефонной сетью, системами безопасности, вентиляции, отопления и солнцезащитных ограждений.

В настоящее время повышенным вниманием со стороны потребителей пользуются энергосберегающие светильники и светотехнические изделия. Обладая улучшенными потребительскими качествами (повышенная светоотдача, комфортный по спектру и не утомляющий зрение немеркнущий свет и др.), современные энергосберегающие светильники отвечают всем требованиям по экономичности и надежности в эксплуатации. Они подразделяются натри группы:

1 Светильники люминесцентные

2 Светильники галогенные

3 Светильники специального назначения. Люминесцентные светильники с электронным пускорегулирующим аппаратом (ЭПРА) с cos ф > 0,93 могут использоваться в подвесном и потолочном исполнении и имеют следующее преимущества:

- экономия электроэнергии до 30 % по сравнению с питанием от электромагнитного пускорегулирующего аппарата (ЭмПРА) и шестикратная экономия электроэнергии по сравнению с аналогичной лампой накаливания;

- увеличение срока службы лампы на 20 % и более за счет оптимального режима с плавным подогревом нитей накала (катодов);

- гарантийное мгновенное включение без дополнительного стартера и бесшумная работа:

- ровный, без мерцания свет, не утомляющий зрение при длительной нагрузке благодаря высокочастотному функционированию люминесцентных ламп;

- отсутствие стробоскопического эффекта - зрительной иллюзии, возникающей в случаях, когда наблюдение какого-либо предмета или картины осуществляется не непрерывно, а в течение отдельных, периодически следующих один за другим, интервалов времени;

- отсутствие электромагнитных помех.

Компактные люминесцентные лампы потребляют электроэнергии в 5 раз меньше, чем лампы накаливания с такими же светотехническими характеристиками, а срок службы у них в 8 раз больше. Различают светильники с зеркальной решеткой и отраженного света.

Галогенные светильники по способу установки выпускаются потолочными, настенными и настольными и используются для локально-местного освещения жилых и административных помещений, офисов, рабочих мест, для фоновой подсветки витрин, экспозиций, стендов. Они обеспечивают освещение любой заданной зоны помещения с помощью шарнирного крепления плафона лампы к корпусу.

В качестве источника света в светильниках применяются галогенные лампы мощностью 20 Вт, которые имеют целый ряд существенных преимуществ по сравнению с обычными лампами накаливания:

- снижение потребления электроэнергии в 2-2,5 раза;

- стабильность светового потока в течение срока службы;

- яркость света, обеспечивающего великолепную цветопередачу и возможность создания разнообразных цветовых эффектов;

- увеличение в 2 раза срока службы по сравнению с обычными лампами накаливания;

- компактность.

Светильники специального назначения серии ИВУ с галогенными лампами мощностью 20 или 50 Вт предназначены для непосредственной установки на поверхности из сгораемого материала, а также рекомендуются для установки в бассейнах, фонтанах, аквариумах, причальных сооружениях, в помещениях с противопожарными установками, в душевых, в химчистках, на садовых участках, на стоянках автомобилей, пешеходных дорожках, лестницах, подземных переходах, на автоматических мойках машин, в мастерских и рыбных магазинах.

Светильники серии ФБУ и НБУ предназначены для освещения как внутри помещений, так и вне их - там, где требуется максимальная защита от воды, влажности, пыли и хулиганов. Антивандальные светильники устойчивы к механическим повреждениям, ударам камнями и любыми твердыми предметами. Они незаменимы при освещении садов, бульваров, пешеходных переходов, террас, портиков, бассейнов, душевых и ванных комнат, туалетов и т.д.

Важное значение в экономии электроэнергии при применении любых ламп имеет оптимальное размещение осветительных приборов, позволяющее экономить до 20 % электроэнергии. Так, при наличии в одном помещении рабочих и вспомогательных зон следует предусматривать локализованное общее освещение рабочих зон и менее интенсивное - вспомогательных зон. Для освещения цехов, складов и других производственных помещений лучшим способом является устройство светящейся линии. Важно, чтобы при проектировании и внедрении любой системы освещения обеспечить среду для зрения, рекомендуемую санитарными нормами:

- 400-500 лк;

-спектральный состав света, максимально приближенный к естественному освещению;

- отсутствие пульсаций и слепящего действия света;

- равномерное распределение яркости.

Одним из экономичных источников для освещения улиц, площадей, скоростных магистралей, транспортных пересечений, протяжных тоннелей, спортивных сооружений, аэродромов, строительных площадок, архитектурных сооружений, вокзалов, аэропортов и др. являются натриевые лампы высокого давления, обладающие самой высокой световой отдачей среди всех известных газоразрядных ламп и незначительным снижением светового потока при длительном сроке службы.

Особая область применения натриевых ламп - это облучение растений в теплицах. Имея благоприятный для большинства тепличных культур спектр излучения, натриевые лампы являются достойной заменой ртутных и металлогалогеновых ламп высокого давления. В отличие от ртутных ламп натриевые лампы не содержат ртути, что значительно расширяет область их применения. Сопоставление по экономичности их работы в течение 10 000 часов показывает, что экономия составляет более 30 %, а срок окупаемости, исходя из эксплуатации их примерно в 12 час в день (8 часов в летнее время и 16 - в зимнее), составит около 2 месяцев.

Основными производителями светильников и светотехнического оборудования к ним являются: БелОМО им. С. Вавилова, Брестский электроламповый завод, Лидский завод электроизделий, ГП «Калибр», ООО «Электрет», АО «ЭНЕФ», ГП «Минский завод Термопласт», НПО «Интеграл», ЗАО «Торговый сервис».

Электробытовые приборы и их эффективное использование

Потребление электроэнергии в быту с каждым годом увеличивается, и эта тенденция сохранится, поскольку население в последние годы активно приобретает бытовую технику (стиральные машины, кухонные комбайны, пылесосы, электрочайники, электромясорубки, электрокофеварки и т.д.), являющуюся одним из главных потребителей электроэнергии в домах и квартирах.

Использование электроэнергии в квартирах можно условно разделить на следующие подгруппы:

 -обогрев помещений;

-охлаждение и замораживание;-освещение;

-стирка белья и мойка посуды (с помощью стиральных машин и посудомоющих аппаратов);

- аудио- и видео аппаратура;

- приготовление пищи (с помощью электроплит);

-использование других электроприборов (пылесосов, утюгов, фенов и т.д.).

В различных домах использование электроэнергии по каждой из вышеперечисленных категорий может варьироваться. Например, в некоторых домах установлены электрические плиты, в других - газовые, для поддержания оптимальной температуры в одной квартире достаточно центрального отопления, в другой - никак не обойтись без электронагревателя.

Ориентировочный расход электроэнергии различными бытовыми приборами приведен в таблице.

Потребление электроэнергии электроприборами в быту

Прибор

Потребление, кВт• ч/год
Лампа накаливания 60 Вт263 (из расчета 12 ч работыв сутки)

Энергосберегающая лампа 9-11 Вт

44 (из расчета 12 ч работыв сутки)
Морозильный аппарат427

Посудомоечный аппарат

475

Электрическая печь

440

Стиральная машина

275

Холодильник

584

Телевизор

180

Видеомагнитофон

150

Кофемолка

65

Компьютер

40

Аудиоаппаратура

35
Утюг30

Энергосбережение в быту начинается с квартиры, собственного дома. Прежде всего, следует утеплить дверные и оконные рамы имеющимися материалами; завесить окна и балконные двери толстыми занавесками, но так, чтобы они не закрывали радиаторы и не препятствовали циркуляции тепла; дополнительно укрепить прозрачную полиэтиленовую пленку на окнах (тройное остекление); закрыть более чем наполовину вентиляционные отверстия в туалете, ванне, на кухне, а также дымоходы плотной бумагой или картоном.

Много тепла бесполезно теряется от радиаторов через стены и открываемые иногда окна. Уменьшить эти потери можно установкой отражающего экрана из блестящей пленки, алюминиевой фольги или оцинкованной жести, наклеенной на фанеру, картон или древесноволокнистую плиту за радиатором под подоконником. Лучшим способом регулирования температуры в квартире является установка кранов и терморегуляторов на радиаторах, которые не следует загораживать мебелью во избежание затруднения циркуляции теплого воздуха в комнате'. Другими мерами по рачительному использованию электроэнергии в быту могут быть:

1Выключение света в том случае и в тех местах, где он не нужен, безухудшения жизненного комфорта. Это правило должно быть обязательнымдля всех членов семьи.

2Замена, где возможно, обычных ламп накаливания энергосберегающими, которые обеспечивают такое же количество света, потребляя при этом на 70-80 % энергии меньше, и горят в 5-6 раз дольше обычных.

3Установка ламп разной мощности, в зависимости от требуемого количества света в определенных местах. Следует знать, что при загрязнении ламп и плафонов освещенность в квартире снижается на 10-15 %.

4Отключение тех электроприборов, для которых предусмотрено дистанционное управление (телевизор, радиотелефон), не только на ночь, но и в тот период, когда ими не пользуются (уход из дома по делам, перерыв и т. п.), поскольку они потребляют электроэнергию, будучи подключенными к сети.

5Использование стиральной машины при полной загрузке, настраивая ее на как можно меньшую температуру. Следует помнить, что на стирку при температуре + 90°С тратится в 3 раза больше энергии, чем на стирку при температуре + 40°С. При этом известен тот факт, что стиральный порошок растворяется и активно реагирует с грязным бельем при температуре + 40 °С.

6Холодильники и морозильники являются одними из самых значительных «потребителей» электроэнергии в квартире. На их долю приходится примерно40 % всей электроэнергии в наших квартирах. Добиться снижения расхода до25 % электричества можно, если следовать нескольким простым принципам:

- регулярно размораживать холодильник во избежание образования в морозильной камере льда толщиной более 5-10 мм;

- устанавливать эти приборы на значительном расстоянии от нагревательных элементов и в местах, не подвергающихся воздействию прямых солнечных лучей;

- обеспечивать вокруг холодильника свободное пространства не менее 1-2 см;

- -класть в холодильник и морозильник только холодные продукты;

- обращать внимание на плотность примыкания дверей к корпусу этих приборов;

- держать дверцу приборов открытой как можно меньше;

- удалять не реже 1 раза в год пыль с обратной стороны приборов;

-отключать холодильник от электросети, если семья уезжает из квартиры на несколько дней.

7. Использование газовых плит является с точки зрения экологии лучшим вариантом, чем приготовление пищи на электроплитах. Но если в квартире установлена электроплита, то экономии электроэнергии можно достигнуть за счет:

- подбора кастрюли или сковороды с идеальной плоской внешней поверхностью, диаметр дна которых должен быть больше примерно на 3 см диаметра нагревательной поверхности плиты;

- выключения электроплиты на несколько минут раньше окончания варки или жаренья продуктов;

- использования посуды с крышкой;

- добавление оптимального количества воды.

8. Установление автоматических выключателей в местах, где требуется освещение в небольшой промежуток времени, например, на лестничных площадках многоквартирного дома, при входе во двор отдельно стоящего одноквартирного дома.

9. При покупке электробытовых приборов в первую очередь необходимо интересоваться не только ценой, но и энергосберегающими параметрами, и лишь сопоставив цену с эксплуатационными расходами, следует принимать решение о возможности приобретения нужного электробытового товара'. ' Важным моментом в экономии электроэнергии, используемой на обогревжилых помещений, является надежное утепление окон, дверей, балконов и других элементов квартир, домов. Наиболее простой и быстрый способ - это свернутые из газет трубки вкладываются в зазоры между створками окна и откосами оконного проема. Этот способ применим только к современным свинчивающимся рамам и эффективен в сильные морозы, но при условии, что щели в окнах невелики

Надежный способ защиты окон от вторжения холода в квартиры - использование пасты из мела и мучного клея. Приготовленную пасту из этих компонентов в соотношении 1:1 заполняют зазоры по всему периметру окна. Если в доме установлены рамы старого образца, то "такой же меловой пастой, только с меньшим содержанием клея (3:1 или 4:1) заполняют щели между оконной коробкой и створками. Для этого все створки открывают, наносят по периметру оконной коробки пасту и затем створки закрывают. Излишки пасты, выдавливаемые через щели, сразу же удаляются. При открытии оконных рам весной, высохшая замазка отлетает без остатков с переплетов.

Щели между входными дверями и косяком можно уплотнить с помощью аптечной резиновой трубки, прибивая ее к косякам мелкими гвоздиками. Если щель велика, одна прикрепляется к косякам, а другая - к двери.

Балконную дверь можно утеплить с помощью простеганного ватного коврика из декоративной ткани. Размеры ее выбирают такими, чтобы пере'

крыть нижние и боковые щели двери. Коврик крепится на небольших крючках, вбитых в дверь и в правую и левую части дверной коробки. Чтобы выйти на балкон, достаточно снять петельки с нескольких крючков.

Дополнительным источником тепла в квартире может быть отражающий экран из обыкновенной фольги за каждым радиатором, обеспечивающий направление в квартиру примерно 2-5 % обычно уходящего на обогрев улицы тепла. Устраивается такой экран на листе картона, соответствующем размеру отопительной батареи, путем крепления к нему по всей площади фольги.

Защиту от холода в сельских домах и на дачах можно обеспечить путем устройства, лучше осенью, завалинки из сухой соломы и листвы. Зимой ее можно сделать из снега. Технология устройства ее в этом случае проста: полиэтиленовую пленку или непригодный для кровли рубероид расстилают по периметру дома так, чтобы половина используемого материала оказалась прижатой к фундаменту дома или стене, а половина лежала на отмостках. Далее засыпается снегом. Изолирующая толь или рубероид предохраняют стены и фундамент от сырости, а снег сберегает тепло.

Повышение эффективности систем отопления. Автономные энергоустановки

Если рассматривать жилой дом как энергопотребляющий объект, то доля теплопотерь в нем в зимний период составляет: через неутепленные или разбитые окна и двери подъездов - 24, через стены - 26, через подвал, перекрытия, лестничные клетки -11, через вентиляционные отверстия и дымоходы -39 %2.

Теплопотери происходят не только через стены здания. Они могут иметь место во время аварий на трассах и на тепловых узлах жилых домов.

Большое количество тепловой энергии уходит из-за некачественного строительства: щели у оконных рам, швы между панелями, крыши и т. п., а также в домах со вставленными обогревательными устройствами в стенах (на 30 % больше, чем с обычными отопительными приборами). До 15-20 % тепловой энергии теряется в тепловых сетях, свидетельством чего является зеленая трава, растущая зимой над теплотрассами.

Такое положение с использованием тепла в быту явилось следствием существовавшей в нашей бывшей великой стране концепции о том, что полезных ископаемых, в том числе и топливно-энергетических ресурсов, в нашей стране хватит не только на нынешнее, но и грядущие поколения. И при проектировании жилых домов никогда не считалась стоимость их эксплуатации, поэтому и строили относительно дешевые, но холодные дома.

На коммунально-бытовые нужды в Республике Беларусь расходуется примерно 65 % тепловой энергии. В то же время потери тепла при производстве и передаче тепловой энергии в отопительных котельных республики достигает 30 %. На 1 м2 отапливаемой площади в нашей стране затрачивается в 2 раза больше условного топлива, чем в Германии и Дании.

Годовой расход тепловой энергии в нашей стране на отопление и вентиляцию 1 м2 общей площади в 5-этажном доме составляет 150-170 кВт, в Скандинавских странах - 70-90 Вт. На Западе после энергетического кризиса 1972-1973 и 1995 г. передовые европейские страны уменьшили расход тепловой энергии на отопление жилых домов в 2 раза. А это не только экономия денежных средств, но и, главное, - изменение самого мышления граждан и руководителей.

Согласно санитарным нормам3 горячая вода в квартиры должна подаваться не ниже 50 °С, подается же она при температуре 37... 38 °С. Температура воздуха в квартире должна поддерживаться на уровне 18... 20 °С (комфортная зона), а на кухнях4 - 16... 18 °С. Семья оплачивает лишь 16-17 % от общих затрат на отопление дома, а от стоимости вырабатываемой тепловой и электрической энергии - лишь 20 %. При такой существующей системе оплаты за потребляемые тепло- и электроэнергию добиться радикального изменения улучшения дела в бытовом секторе будет трудно до тех пор, пока жильцы не будут экономически заинтересованы в экономии тепловой энергии. А для этого предстоит переломить психологию всех граждан по отношению к экономии тепла, воды, газа. Весь европейский опыт показывает, что только продуманная непрерывная система воспитания и образования позволяет получить реальные результаты в энергосбережении в бытовом секторе и производственной сфере. На Западе, в частности в Германии, 78 % всего жилья получает тепло от местных котельных, стоимость единицы которого составляем 0,05 DM/кВт • ч, в то время как при централизованном теплоснабжении это: показатель составляет 0,08. Имеющийся в нашей стране опыт децентрализованного теплоснабжения показывает высокую его эффективность. Местные котельные, построенные в столице (гостиница «Беларусь», несколько жилых домов и т. п.), окупают себя за 1,5-3 года5. В 1998 году для обеспечения нужд страны было произведено 77 млн Гкал, в 1999 году - 70 млн Гкал тепловой энергии. Для того чтобы удовлетворить потребность республики в год достаточно 50 млн Гкал.

Придавая важное значение энергосбережению в жилищно-коммунальном секторе экономики, Президент Республики Беларусь А. Г. Лукашенко дал 13 июня 2001 года поручение облисполкомам и Минскому горисполкому совместно с заинтересованными министерствами и ведомствами осуществить 1еры по повышению эффективности жилищного строительства, снижению затрат на развитие инженерно-транспортной и социальной инфраструктур за счет уплотнения застройки, применения локальных источников теплоэнерии, автономных систем отопления, водоснабжения и канализации'.

Одним из технических решений сокращения сети теплоснабжения и экономии тепловой энергии является децентрализованная выработка тепла при помощи автоматизированных автономных, в т. ч. и крышных, котельных, (работающих на газовом топливе. Преимущество этого вида теплоснабжения состоит в следующем: возможность построить котельную, удовлетворяющую потребность именно данного здания; экономия земельного участка; экономия энергии за счет отсутствия потерь; возможность контроля теплоты и топлива; установка необходимого режима расхода теплоты в зависимости от продолжительности рабочего дня и температуры наружного воздуха; высокий КПД (90 %) котельных установок; более низкие температуры и давления теплоносителя, что повышает долговечность систем теплоснабжения.

Системы отопления жилых и общественных зданий являются одними из самых значительных потребителей тепловой энергии. Расход тепловой энергии на эти цели составляет более 30 % энергоресурсов, потребляемых народным хозяйством. При этом многоквартирные дома, построенные в 1950-1960 годы расходуют на нужды отопления от 350 до 600 кВт • ч на 1 м2. Для сравнения укажем, что этот показатель составляет в Германии 260 кВт • ч, в Швеции и Финляндии - 135 кВт • ч3.

Наиболее перспективными направлениями энергосбережения являются внедрение автономных систем тепло- и энергоснабжения, устройство напольного отопления, а также установок, использующих возобновляемые источники энергии и теплоутилизаторов.

Автономные системы теплоснабжения в виде мини-котельных становятся перспективными в тех местах, где в качестве топлива используется природный газ. Они и с экологической точки зрения способствуют улучшению состояния воздушного бассейна, т. к. из-за снижения количества сжигаемого газа уменьшается количество дымовых газов, а газовые выбросы содержат в 2-3 раза меньше вредных веществ в 1 м3, чем крупные районные котельные. Но децентрализованное теплоснабжение на базе небольших индивидуальных котельных является эффективным при малой плотности тепловой нагрузки (одно-, двухэтажные застройки в сельских и других населенных пунктах).

Естественно, при существующих развитых тепловых сетях централизованного теплоснабжения необоснованно говорить о повсеместном переходе на автономные котельные. Но внедрение их возможно в следующих случаях:

- при строительстве новых и реконструкции старых зданий в районах, где прокладка тепловых сетей технически невозможна;

- для обеспечения теплом объектов, не допускающих перепадов в теплоснабжении (школы, больницы), или потребителей, несущих из-за отсутствия тепла большие экономические потери (гостиницы);

- при обеспечении теплом потребителей, распложенных на концевых участках существующих тепловых сетей и испытывающих недостаток тепла из-за низкой пропускной способности тепловых сетей или недостаточной! перепада давления между прямой и обратной магистралями;

- при строительстве объектов в небольших городах, где централизованное теплоснабжение развито слабо, а отдельные объекты вводятся разрозненно.

Основным элементом автономной энергоустановки являются комбинированные газовые настенные водонагреватели, в корпусе которых находится бесшумный циркуляционный насос и мембранный расширитель. Горячая вода от водонагревателя по металлическим трубам, укладываемым в бетонной подготовке пола или в плинтусе специальной конструкции, разводится по комнатам.

Опыт эксплуатации 72-квартирного девятиэтажного жилого дома в микрорайоне № 17г. Гомеля с этой принципиально новой для нашей страны системой теплоснабжения, разработанной институтом «Гомельгражданпроект», показал ее надежность и экономичность. Так, за ноябрь 1999 г. проживающая в трехкомнатной квартире семья в составе 4 человек на отопление-горячее водоснабжение и приготовление пищи израсходовала 150 м3 газ;: Причем треть этого количества израсходована непосредственно на кухне Выполненные расчеты показали, что при традиционной системе теплоснабжения аналогичной квартиры от общедомовой системы с подключением к внешнему источнику для целей отопления и горячего водоснабжения потребовалось бы около 500 м3 газа.

Высокая эффективность работы предложенной системы поквартирного отопления достигнута благодаря:

- сравнительно высокому КПД газовых водонагревателей (« 85 %);

- исключению потерь тепла за пределами квартир;

- отсутствию перерасхода тепла в межсезонные периоды (по имеющимся данным, он составляет до 20 %);

- возможности поквартирного учета и покомнатного регулирования температуры внутри квартиры.

Кроме того, система поквартирного отопления и горячего водоснабжения существенно уменьшила количество приборов учета. Вместо используемых в настоящее время счетчиков газа, отопления, горячего и холодного водоснабжения достаточно установить только два прибора для учета расхода газа и холодной воды. Кроме того, отпадает необходимость в прокладке наружных тепловых сетей. Пожалуй, одно из самых главных преимуществ этой системы отопления перед традиционной состоит в том, что она дает возможность владельцу квартиры создать комфортную температуру воздуха не посредством открывания форточки и оконной створки, а с помощью регулировочного краника с ручным управлением или автоматической термостатической головкой, экономя тем самым свои деньги на отопление квартиры и государственные энергоресурсы.

Экономия расхода теплоты за счет перечисленных выше преимуществ поквартирного отопления достигает 30 % в год.

Возведение жилых домов с подобной системой инженерного обеспечения весьма оправдано в районах существующей городской застройки, где отсутствуют резервные мощности действующих централизованных источников теплоснабжения.

Опыт работы автономных котельных показывает, что они надежны и экономичны. При теплоснабжении от этих котельных потребитель получает тепловую энергию по тарифам, в 3 раза ниже действующих. За счет этого строительство таких котельных окупается практически за один сезон.

Во всех промышленно и энергетически развитых странах наблюдается очень быстрый рост применения электроотопления, выполняемого, как, правило, путем укладки нагревательных кабелей в пол. Применение электроотопления допускается СНИП 2.04.05-91. Для помещений с постоянным пребыванием людей установлено, что средняя температура подогреваемого пола не должна превышать 26°С, а для дорожек вокруг бассейнов - не большe 30°С. Одной из таких систем электроотопления является кабельная система Теплолюкс. Она устанавливается в толще пола, что превращает всю обогреваемую поверхность в источник тепла, температура которого лишь на несколько градусов превышает температуру воздуха. Эта система, как и другие, подобные ей, используется как основная в отдельно стоящих зданиях, коттеджах и в тех случаях, когда нет возможности выполнить подключение центрального водяного отопления. Она может применяться как дополнительная система отопления (совместно с другими) для получения комнатной температуры.

Совершенно новый способ отопления помещений различного назначения разработан в БИТУ профессором В.П. Лысовом. Созданная им полимерная греющая электропроводка, состоящая из сотен тончайших полимерных волокон, обработанных по оригинальной технологии специальным раствором и соединённых в пучок, обеспечивает при одинаковом расходе электроэнергии гораздо более высокий, чем у металлического проводника, рост температуры, поскольку волокна постоянно греют друг друга. Эту проводку, а точнее, комплект проводов раскладывают по схеме на подготовленные бетонное основание и цементируют. Можно размещать провода и под плиткой, различными линолеумами, ковровыми покрытиями, под дощатым настилом и паркетом. В любом случае будет обеспечена рекомендованная медиками температура пола 25 °С, а воздуха 20... 22 °С. Для надежности можно включить в сеть и автоматический терморегулятор.

Затраты на отопление и эксплуатацию этим способом в 1,5-2 раза ниже по сравнению с другими известными способами, в том числе и аналогичными зарубежными системами греющего пола, где используются металлические проводники. Но недостаток металлических проводников - сопровождающие его нежелательные для организма вихревые токи. Полимерный проводник генерирует электромагнитное поле в 2-10 раз более слабое, которое и близко не подходит к нижнему пределу.

Сфера применения этого способа обогрева очень широка: дома, квартиры, офисы, животноводческие помещения и др. Достоинства его оценены многими владельцами собственных домов, руководителями, но особенно довольны руководители совхозов, где новинка применяется уже 3 года и, кроме экономии энергоресурсов на отопление, во многом способствует сохранению поголовья скота и их привесу. Согласно проведенным учеными БелНИИ животноводства исследованиям мест содержания животных с обогреваемыми полами установлено, что сохранность и привесы поросят повышаются, при этом расход электроэнергии сокращается с 250 Вт при ламповом обогреве до 120-130 Вт при обогреваемых полах на 1 ското-место. Такой способ обогреваемых полов внедрен во многих хозяйствах страны.

Простоту устройства и эксплуатацию греющих полов, невысокую стоимость и расход эл 

RVER["DOCUMENT_ROOT"]."/cgi-bin/footer.php"; ?>