Ссылка на архив

Плоская задача теории упругости

Нижегородский государственный

архитектурно-строительный университет.

Кафедра сопротивления материалов и теории упругости.

Расчетно-проектировочная работа

Плоская задача теории упругости

Выполнил: Студент гр. 163 А.В.Троханов

Проверила: Т.П. Виноградова

Н.Новгород 2002 г.

Из тела находящегося в плоском напряженном состоянии, выделена пластина, толщина которой 1 см, размеры в плане 20х20 см.

Схема закрепления пластины.

Задаваясь функцией напряжений, общий вид которой

Ф (х,у)=а1х3у+а2х33х2у+а4х25ху+а6у27ху28у39ху3

Принять два коэффициента функции согласно таблиц 1 и 2, остальные шесть коэффициентов принять равными нулю. В этих же таблицах даны значения модуля упругости Е и коэффициента Пуассона для материала пластины.

Найти общие выражения для напряжений sх, sу, tху (объемные силы не учитывать) и построить эпюры этих напряжений для контура пластины.

Определить выражения для перемещений U и V. Показать графически(на миллиметровке) перемещение пластины в результате деформирования, определив компоненты перемещений U и V в девяти точках, указанных на схеме. Для наглядности изображения для перемещений выбрать более крупный масштаб, чем масштаб длин. Значение U и V свести в таблицу.

Расчет.

Дано: а3=1/3, а4= 1

Е=0,69*106 кг/см2

n=0,33

Решение:

1.Проверим, удовлетворяет ли функция напряжений бигармоническому уравнению.

Ф(х,у)=

Поскольку производные

-бигармоническое уравнение удовлетворяется.

2.Определяем компоненты по формулам Эри, принимая объемные силы равными нулю.

sх=

sу=

tху=

3.Строим эпюры напряжений для контура пластины согласно полученным аналитическим напряжениям.

4.Проверяем равновесие пластины

Уравненения равновесия:

Sх=0 -Т56=0 > 0=0

Sy=0 Т4321-N2+N1=0 > 0=0

SM=0 M (T4T3)=-M(T2T1) > 0=0

удовлетворяется, т.е. пластина находится в равновесии.

5.Для точки А с координатами (5,-5) найти величины главных напряжений и положение главных осей для точки А.

В этой точке напряжения в основных площадках. sх=0, sу=-1,33, tху=3,33,

Найдем главное напряжение по формуле:

=-0,665±3,396 кгс/см2

smax=sI=2,731 МПа

smin=sII= -4,061 МПа

Находим направление главных осей.

aI=39,36o

aII=-50,64o

6.Определяем компоненты деформации

7.Находим компоненты перемещений

Интегрируем полученные выражения

j(у), y(х) –некоторые функции интегрирования

или

После интегрирования получим

где с1 и с2 – постоянные интегрирования

С учетом получения выражений для j(у) и y(х) компоненты перемещений имеет вид

Постоянные с1, с2, и с определяем из условий закрепления пластины:

1) v =0 или


2) v =0 или

3) u =0 или

Окончательные выражения для функций перемещений u и v

Покажем деформированное состояние пластины определив для этого перемещение в 9-ти точках.

123456789
координатыХ(см)-1001010100-10-100
У(см)1010100-10-10-1000

V*10-4

3,80,770,58-0,1900,193,23,10

U*10-4

-3,1-3,5-3,9-1,90-0,23-0,45-1,8-1,9

Масштаб

ü длин: в 1см – 2см

ü перемещений: в 1см - 1*10-4см