Ссылка на архив

Синтез управляющего автомата модели LEGO транспортной тележки и моделирование ее движения

Кубанский государственный технологический университет

Кафедра автоматизации технологических процессов


Задание на контрольную работу

По дисцип­лине “Автоматизированное управление дискретными процессами” для студентов заочной формы обучения специальности 21.01 — “Автоматика и управление в технических системах” на тему: “Синтез управляющего автомата модели LEGO — “транспортная тележка” и моделирование её движения вдоль трассы”



Выдано:

Аспирантом каф. АПП 06.09.99 /Напылов Р.Н./


студенту гр. ____________ /____________/


Краснодар 1999

1Исходные данные

1.1Управляемый процесс — движение модели LEGO транспортной тележки вдоль заданной траектории в виде белой полосы. Ориентация тележки относительно трассы регулируется датчиками контраста.

1.2Условная схема транспортной тележки приводится на рисунке 1.1. Тележка движется за счёт заднего привода, создающего постоянное тягловое усилие . Вращение переднего колеса тележки осуществ­ляется с помощью реверсивного поворотного двигателя, отрабатывающего с постоянной угловой скоростью , где — угол поворота переднего колеса (рисунок 1.1)

1.3Транспортная тележка, как объект управления имеет систему дискретных входных и выходных сигналов, структурно представленную на рисунке 1.2. Кодировка указанных сигналов следующая:


Таблица 1.1 – Кодировка управляющих сигналов

Разряд сигнала

X


Управляющее действие

X0

1 – двигатель тележки включен

0 – двигатель тележки выключен

X1

    1 – поворотный двигатель отрабатывает влево

0 – двигатель влево не отрабатывает

X2

1 – поворотный двигатель отрабатывает вправо

0 – двигатель вправо не отрабатывает


Таблица 1.2 – Кодировка выходных сигналов

Разряд сигнала

Y


Событие

Y0

1 – левый датчик над светлой точкой трассы

0 – левый датчик над тёмной точкой трассы

Y1

    1 – правый датчик над светлой точкой трассы

0 – правый датчик над тёмной точкой трассы


Д — датчики контраста;

ц — центр масс тележки;

— вектор тяглового усилия двигателя;

— вектор приведенной силы трения;

— вектор реакции трассы (опоры) на переднее колесо;

— центростремительная реакция трассы;

— упрощенная габаритная определяющая;

— расстояние между датчиками контраста.


Рисунок 1.1 – Динамическая схема транспортной тележки






— трёхразрядный управляющий сигнал;

— двухразрядный выходной сигнал.


Рисунок 1.2 – Структурная схема управления транспортной тележкой




Сигналы Y используются в качестве обратной связи управляющего автомата. По изменению этих сигналов возможно судить о текущем положении тележки относительно белой полосы трассы. Сигналы X вырабатываются управляющим автоматом в зависимости от поведения во времени сигналов Y так, что бы обеспечить совпадение траекторий движения тележки и трассы.

1.4Решение о подачи питания на задний привод тележки и, расположенный на ней, управляющий автомат принимает внешний оператор. Поэтому, исходным состоянием тележки является активность двигателя привода. В этом случае задача управляющего автомата состоит только в обеспечении движения тележки вдоль трассы.

1.5Допущения, делаемые при рассмотрении управляемой тележки в динамике:

  1. тягловое усилие постоянное;

  2. приведённая сила трения пропорциональна линейной скорости движения тележки;

  3. сила трения , подменяющая реакцию в момент, когда (переднее колесо проскальзывает), постоянна и пропорциональна массе тележки;

  4. сила трения , подменяющая реакцию в момент, когда (тележку заносит), также постоянна и пропорциональна массе тележки;

  5. масса тележки и её момент инерции относительно центра масс связаны зависимостью: , как если бы вся масса тележки была сосредоточена в стержне (рисунок 1.1).

2Основное задание

2.1Сформировать модель управляющего автомата в форме таблицы переходов и выходов автомата Милли, предварительно составив список его возможных состояний и перекодировав входной алфавит автомата во множество многозначной логики (Y - четырёхзначное);

2.2Минимизировать, в случае возможности, таблицу переходов и выходов автомата Милли;

2.3Составить алгебрологические выражения функции переходов и функции выходов минимизированного автомата, используя только двоичное представление входных и выходных сигналов;

2.4Минимизировать полученные функции;

2.5По минимизированным логическим функциям зарисовать цифровую схему управляющего автомата (стандарт условного графического изображения логических элементов — Российский).


3Дополнительное задание

Вывести модель динамики транспортной тележки. Положение центра масс тележки в плоской системе координат задавать вектором положения . Положение точки приложения силы тяги привода задавать вектором .

4Список источников

4.1Юдицкий С.А., Магергут В.Э. Логическое управление дискретными процессами. Модели, анализ, синтез. — М.: Машиностроение, 1987. — 176 c.

4.2Кузнецов О.П., Адельсон-Вольский Г.М. Дискретная математика для инженеров. — М.: Энергоатомиздат, 1987. — 450 c.

4.3Шварце Х., Хольцгрефе Г.-В. Использование компьютеров в регулировании и управлении: Пер. с нем.—М.: Энергоатомиздат, 1990. — 176 с.: ил.

4.4Каган Б.М., Сташин В.В. Основы проектирования микропроцессорных устройств автоматики. — М.: Энергоатомиздат, 1987. — 304 c.

4.5Мишель Ж., Лоржо К., Эспью Б., Программируемые контроллеры. — Пер. c французского А.П. Сизова — М.: Машиностроение, 1986.

4.6Микропроцессоры: В 3-х кн. Кн. 2. Средства сопряжения. Контролирующее и информационно-управляющие системы: Учеб. Для втузов/В.Д. Вернер, Н.В. Воробьёв, А.В. Горячев и др.; Под ред. Л.Н. Преснухина. — М.: Высш. шк., 1986. — 383 c.: ил.

4.7Фиртич В. Применение микропроцессоров в системах управления: Пер. с нем. — М.: Мир, 1984,—464 c., ил.

5Решение основного задания

5.1Выходной алфавит транспортной тележки является входным алфавитом управляющего автомата Y. Для возможности применения теории конечных автоматов перекодируем его во множество четырёх знаков в соответствии с таблицей 5.1.


Таблица 5.1 – Кодировка входного алфавита управляющего автомата

Y0

Y1

Y

0

0

1

1

0

1

0

1

0

1

2

3


5.2При определении возможных состояний управляющего автомата будем руководствоваться правилом: — допустимо введение избыточных состояний, которые при последующей минимизации автомата исключаются; недопустим пропуск необходимого состояния, который уменьшает адаптированность автомата к внешним ситуациям.

Перечень возможных состояний автомата, отождествлённых с ситуационными событиями транспортной тележки, приводится ниже.


Таблица 5.2 – Перечень состояний управляющего автомата транспортной тележки

Код
состояния S

Описание состояния

0

1


2


3

Исходное состояние неуправляемого движения;

Поворот вправо (поворотный двигатель непрерывно отрабатывает вправо);

Поворот влево (поворотный двигатель непрерывно отрабатывает влево);

Конфликт поворотов.


5.3Для возможности формирования математической модели управляющего автомата рассмотрим описательный алгоритм управления транспортной тележки по состояниям:

  • В исходном состоянии тележка непрерывно движется под действием привода. Ни один из датчиков контраста не находится над белой полосой трассы. Поворотный двигатель остановлен;

  • При возникновении белой полосы под левым датчиком контраста включается поворотный двигатель на отработку влево. Привод отключается и далее следует движение по инерции, что уменьшает вероятность заноса тележки;

  • Как только левый датчик контраста “сходит” с белой полосы поворотный двигатель останавливается в текущем состоянии, а привод вновь запускается;

  • При возникновении белой полосы под правым датчиком — поведение транспортной тележки аналогично;

  • Возникновение белой полосы под правым и левым датчиком свидетельствует о том, что тележка движется перпендикулярно трассе. Это сбойная ситуация, при которой следует отключение привода и блокировка управляющего автомата. Нормальный ход работы автомата может быть восстановлен только “сбросом”.


5.4Поскольку управляющий сигнал имеет три разряда, то для составления модели автомата Милли необходимо построить три таблицы переходов и выходов. Указанные таблицы, эквивалентные описательному алгоритму управления, приводятся ниже.


Таблица 5.3 – Таблицы переходов и выходов управляющего автомата


Код

Si

Для X0

Для X1

Для X2

yyy
012301230123
0



Код

Si

Для X0

Для X1

Для X2

yyy
012301230123
1

2

3


5.5Как видно, состояния S0, S1, S2 явно эквивалентны, причём для каждого из выходов X. Представляется возможным эти эквивалентные состояния обозначить одним состоянием S0 – состояние управления тележкой. В этом случае, состояние блокировки S3 удобно переобозначить как S1 – состояние блокировки автомата. В результате получаем модель несократимого автомата Милли.


Таблица 5.4 – Таблицы переходов и выходов несократимого автомата


Код

Si

Для X0

Для X1

Для X2

yyy
012301230123
0

1


5.6Учитывая, что код состояния полученной модели описывается одноразрядным сигналом S, а также учитывая кодировку входных сигналов Y (табл. 5.1), составим таблицу истинности комбинационной схемы автомата, непосредственно по таблице 5.4 и введя обозначения: S(j) — текущий сигнал состояния, S(j+1) — сигнал состояний на следующем такте автомата.

Судя по таблице 5.5, минимизации поддаётся только функция переходов . Минимизируем её методом карт Карно (см. рис. 5.1).


Таблица 5.5 – Таблица истинности комбинационной схемы автомата

S(j)00001111

Y0

00110011

Y1

01010101
S(j+1)00011111

X0

10000000

X1

00100000

X2

01000000

Рисунок 5.1 – Минимизация функции переходов методом карт Карно






5.7Теперь можно записать логические выражения для комбинационной схемы автомата.

Функция переходов:

. (5.1)

Функции выходов в СДНФ по таблице истинности:

. (5.2)

Для удобства реализации комбинационной схемы представим рассматриваемые функции в базисе “ИЛИ-НЕ”:

. (5.3)


5.8На основе системы (5.3), окончательно получаем цифровую схему реализации управляющего автомата транспортной тележки, представленную на рисунке 5.2.

Особенностью полученной схемы является то, что она не содержит элементы памяти и задержки и, соответственно, не является тактируемой. Такой вариант реализации возможен для автоматов с двумя состояниями, одно из которых является абсолютно устойчивым. В нашем случае состояние блокировки есть абсолютно устойчивое состояние. Если комбинационная схема сформируем это состояние, то за счёт обратной связи по линии S запрещается реакция выходов X на изменение входных сигналов Y. Выход из этого устойчивого состояния возможен только принудительным обнулением линии S единичным уровнем на линии “Сброс”. Конфликтных “Состязаний” в рассматриваемом автомате не возникает.


Рисунок 5.2 – Цифровая схема управляющего автомата транспортной тележки



6Решение дополнительного задания

6.1Действующая на тележку в динамике система сил раскладывается на результирующую силу, приложенную к центру масс тележки и вращающий момент , относительно того же центра масс.

6.2Как видно из рисунка 1.1 вращающий момент определяется только силой реакции опоры переднего колеса

, (6.1)

  1. — угол поворота переднего колеса.


Зная из рисунка, что

, (6.2)

получим:

. (6.3)

Положительные значения вращающего момента соответствуют повороту тележки влево, отрицательные — вправо.

6.3Результирующая сила, действующая на центр масс тележки, определяется векторной суммой всех сил на рисунке 1.1:

. (6.4)

Для нашего случая важно знать направление действия силы , которое зависит от направлений и величин составляющих рассматриваемой суммы. В свою очередь направления составляющих рассматриваются относительно положения габаритной определяющей, которое характеризуется единичным вектором:

, (6.5)

  1. — вектор, задающий координаты центра масс тележки;

— вектор, задающий координаты точки приложения силы тяги ;

— габаритная определяющая транспортной тележки.


6.4Вектор представляется в базисе вектора следующим образом:

, (6.6)

  1. — единичный вектор, ортогональный вектору ,

    или

. (6.7)

Если имеет координаты , то имеет координаты . Тогда вектор , выраженный в базисе Декартовой системы координат, имеет вид:

, (6.8)

  1. — матрица (оператор) поворота вектора на угол .

Теперь, используя выражение (6.2), окончательно найдём, что

. (6.9)

6.5Из рисунка 1.1 очевидным образом вытекают выражения для векторов силы тяги и приведённой силы трения, а именно:

, (6.10)

. (6.11)

6.6Центростремительная реакция трассы определяется произведением массы тележки и нормальной составляющей ускорения её центра масс, возникающей при закруглении траектории движения:

, (6.12)

  1. — центростремительное ускорение.


Если траектория движения центра масс задаётся вектором , то

, (6.13)

  1. — вектор скорости центра масс;

— вектор полного ускорения;

— оператор скалярного произведения векторов.

Это физический факт. Вывод его опускаем.


6.7Центр масс тележки смещается под действием результирующей силы , при этом справедливо:

. (6.14)

6.8Точка приложения силы тяги смещается под действием вращающего момента , за счёт которого ей придаётся угловое ускорение :

, (6.15)

  1. — момент инерции тележки относительно центра масс.

Зная угловое ускорение можно найти тангенциальное в скалярной форме:

,

    а затем и в векторной:

, (6.16)

  1. — векторная скорость изменения ориентации габаритной определяющей.

С другой стороны, — вектор тангенциального ускорения может быть выражен через полное ускорение вектора :

, (6.17)

  1. — вектор полного ускорения изменения ориентации габаритной определяющей;

В результате имеем связь:

. (6.18)

6.9Учитывая, что приведённая сила трения пропорциональна модулю скорости центра масс:

, (6.19)

  1. — коэффициент трения,

на основании всех найденных зависимостей путём исключения неизвестных нетрудно получить систему дифференциальных уравнений, являющуюся моделью динамики транспортной тележки в векторной форме. Записать эту систему в одну строчку проблематично, поэтому ограничимся указанием того, что первое дифференциальное уравнение системы строится на основе выражений: (6.3), (6.4), (6.5), (6.9), (6.10), (6.11), (6.13), (6.14), (6.19), а второе на основе: (6.3), (6.5), (6.18) Решением первого уравнения является зависимость траектории центра масс тележки от времени, решением второго — ориентация во времени вектора .

Полученная система не имеет аналитического решения и поэтому должна решаться численно при любой зависимости от времени угла поворота и четырёх начальных условиях типа:

, (6.20)

которые показывают, что в нулевой момент времени центр масс тележки находится в начале координат, скорость тележки равна нулю (и поступательная и вращательная), тележка сориентирована вертикально по оси .

Для более детального учёта свойств транспортной тележки в динамики выражения векторов реакций трассы должны быть заменены на выражения с условиями сравнений в соответствии с допущениями, сформулированными в задании контрольной работы.