Ссылка на архив

Термоэлектрические генераторы

ТЕР­МО­ЭЛЕК­ТРИ­ЧЕ­СКИЕ ГЕ­НЕ­РА­ТО­РЫ

1) Общие сведения о термоэлектрических генераторах.

Термоэлектрические генераторы (ТЭГ) представляют собой полупроводниковые термопары и предназначены для прямого преобразования теп­ловой энергии в электроэнергию. они используются в передвижных АЭУ , питающих труднодоступные объекты, которые монтируются в отдаленных районах Земли (автоматические метеостанции, морские маяки и т.п.). В перспективе такие объекты могут монтироваться на Луне или на других планетах. В качестве источников теп­ла для подвода к горячим спаям ТЭГ : радиоактивные изотопы (РИ­ТЭГ), ядерные реакторы (ЯР­ТЭГ), солнечные концентраторы различного исполнения (СТЭГ). Ориентировочно принимают, что при электрических мощностях от 1 до 10 кВт на КЛА целесообразны РИ­ТЭГ и СТЭГ, а при повышенных уровнях мощности - ЯР­ТЭГ. Последние наиболее перспективны для АЭУ КЛА.

Достоинства ТЭГ: большой срок службы, высокая надежность, стабильность параметров, вибростойкость. Недостатки ТЭГ: невысокие относительные энергетические показатели: удельная масса 10-15 кг/кВт, поверхностная плотность мощности 10 кВт/м (на единицу поперечного сечения элемента ), объемная плотность мощности 200-400 кВт/м3 и сравнительно низкий КПД преобразования энергии (5-8%). Применительно к ЛА ТЭГ представляют собой батареи кремне-германиевых термоэлектрических элементов (ТЭЭ), которые по матричному принципу соединены в ветвях последовательно, а ветви могут иметь меж­ду собой параллельные соединения. Батареи ТЭЭ заключены с герметичные контейнеры, заполненные инертным газом во избежание окисления и старения полупроводников. Плоские или цилинд­рические конструкции ТЭГ снабжаются устройствами для подвода теп­ла на горячих спаях и для его отвода на "холодных" спаях полупроводниковых термостолбиков. Конструкция силовых электровыводов ТЭГ должна обеспечивать одновременно термоплотность и электрическую изоляцию от корпуса (контейнера), что представляет достаточно сложную техническую задачу.

2) Физические основы работы термоэлектрических генераторов.

В основе действия любого ТЭЭ лежат обратимые термоэлектрические эффекты Пельтье, Томсона (Кельвина) и Зебека. Определяющая роль в ТЭГ принадлежит эффекту термо-ЭДС (Зебека). Преобразование энергии сопровож­дается необратимыми (диссипативными) эффектами: передачей теп­ла за счет теп­лопроводности материала ТЭЭ и протекании тока. Материалы ТЭЭ с приместной электронной и дырочной проводимостью получают введением легирующих добавок в кристаллы основного полупроводника.

Рис. 1. Принципиальная схема элементарного полупроводникового ТЭГ

При рабочих температурах Т 900 100 К целесообразны сплавы 20-30% Ge-Si, а при Т 600 800 К - материалы на основе теллуридов и селенидов свинца, висмута и сурьмы. Схема кремниевого ТЭЭ показана на рис. 1. Теп­ло Q1 подводится к ТЭЭ (ТЭГ) через стенку нагревателя 1 с помощью теп­лоносителя ( например жидкометаллического), теп­ловой трубы или при непосредственном контакте с зоной теп­ловыделения реактора. Через стенку 7 холодильника теп­ло Q2 отводится от ТЭГ (излучением, теп­лоносителем или теп­ловой трубой). Спаи полупроводниковых кристаллических термостолбиков 4 и 9 образованы металлическими шинами 3 и 5, 8, которые электрически изолированы от стенок 1 и 7 слоями диэлектрика 2, 6 на основе оксидов температур Т = Т1-Т2.

Эффективность ТЭГ обеспечивается существенной разнородностью структуры ветвей 4 и 9. Ветвь р-типа с дырочной проводимостью получается введением в сплав Si-Ge акцепторных примесей атомарного бора В. Ветвь п-типа с электронной проводимостью образуется при легировании Si-Ge донорными атомами фосфора Р. Из-за повышенной химической активности и малой механической прочности полупроводниковых материалов соединение их с шинами 3, 5, 8 выполняется прослойками из сплава кремний-бор. Для достижения стабильной работы батарея ТЭЭ герметизирована металлической кассетой, заполненной аргоном.

Эффект Пельтье. В пограничной плоскости - спае разнородных полупроводников (или металлов) - при протекании тока I поглощается теп­ло Qп, если направление тока I совпадают с направлением результирующего теп­лового потока ( который возник бы при подогреве спая). Если же направления тока I и этого потока противоположны, Qп происходит от внешнего источника теп­ла (из нагревателя потребляется дополнительная энергия) либо из внутренних запасов энергии, если внешний источник отсутствует ( в этом случае наблюдается охлаж­дение спая). В замкнутой на сопротивлении Rп термоэлектрической цепи ТЭГ на горячих спаях столбиков ТЭ теп­ло Qп поглощается (эндотермический эффект). Это охлаж­дение Пельтье надо компенсировать дополнительным подводом теп­ла Qп извне. На холодных спаях теп­ло Пельтье выделяется (экзотермический эффект). Выделившееся теп­ло Qп необходимо отводить с помощью внешнего охлаж­дающего устройства. Указанные явления обуславливаются перераспределением носителей зарядов (электронов) по уровням энергии: при повышении средней энергии электронов ее избыток выделяется в спае. Теп­ло Пельтье пропорционально переносимому заряду: где =(Т) - коэффициент Пельтье

Электрический ток I=dq/dt, следовательно, энергия (за время t )

а теп­ловая мощность

Обратимость эффекта Пельтье состоит в том, что при питании цепи током I от внешнего источника характер теп­лового действия I на спай можно изменять реверсированием направления тока . На этом основано создание термоэлектрических нагревателей и холодильников. Последние имеют больше практическое значение.

Эффект Томсона (Кельвина) . Эффект Томсона относится к объемным (линейным) эффектам в отличие от плоскостного (точечного) эффекта Пельтье. при протекании тока I по термически неоднородному полупроводнику (или проводнику) на его отрезке (х1,х2) с перепадом Т1-Т20 в случае совпадения направлений тока и градиента

выделяется теп­ло Томсона Qт (нагрев отрезка). При встречных направлениях I и Т теп­ло Qт поглощается (охлаж­дение отрезка). Эффект объясняется изменением энергии движущихся электронов при перемещении в область с иным температурным уровнем. При реверсе направления I наблюдается обратимость эффекта Томсона, т.е. перемена экзо- или эндотермического характера теп­лового действия. Теп ловя энергия пропорциональна току I и перепаду Т т.е. причем dT=|T|dx. Следовательно (для на р- и п-участках),

Здесь - среднее значение коэффициента Томсона для данного материала. В одномерном случае |T|=dT/dx. Теп­ловая мощность Количественное значение эффекта Томсона второстепенно.

Эффект Зебека. В цепи двух разнородных проводников или полупроводников, спай и концы которых имеют перепад температур, возникает элементарная термо-ЭДС dE=Z(T)dT или ЭДС

причем среднее значение коэффициента Зебека

Эффект обратим: если соотношение заменить на , то направление действия Е меняется, т.е. происходит реверс полярности ТЭЭ. Обратимость эффекта Зебека сопровож­дается обратимостью эффекта Пельтье.

Принцип работы ТЭЭ. (рис. 1). Кинетическая энергия электронов на конце цепи с выше, чем на "холодных" концах с Т=Т2 , следовательно, преобладает диффузия электронов от горячего спая к холодным концам. концентрация электронов в р- и п-ветвях различна, поэтому более отрицательный потенциал получает конец термостолбика п-типа, по отношения к которому конец столбика р-типа имеет положительный потенциал. Разность потенциалов Е=Z(T1-T2) обуславливает ток I ( при замыкании цепи на сопротивление Rн нагрузки) и полезную электрическую мощность Работе ТЭГ сопутствуют обратимые эффекты.

3)Батареи термоэлектрических элементов.

Для получения в ТЭГ характерного напряжения U30 В при ЭДС одного ТЭЭ Е0,10,3 В требуется последовательно соединить в батарею примерно N102 ТЭЭ. при заданных размерах сечения термостолбика и уровнях тока I нагрузки необходимое число параллельных ветвей в батарее определяется плотностью тока J=I/s10 A/см2. Для КЛА выполняются батареи ТЭГ мощностью от единиц до сотен ватт. В СССР для стационарных и передвижных АЭУ созданы РИ­ТЭГ серии "Бета" мощностью до 10 Вт на радиоактивном изотопе церия 144Се. Плоские и цилинд­рические варианты ТЭГ определяются их компоновкой в блоке. Каскадное соединение ТЭГ позволяет повысить КПД преобразования энергии до 0,13. В целях уменьшения удельной массы ТЭГ разработаны многослойные пленочные ТЭЭ. представляет интерес создание в перспективе ТЭГ в виде экспериментальных реакторов-генераторов на базе интегрального исполнения ТЭЭ и теп­ловыделяющих элементов (ТВЭЛ) из делящихся соединений типа сульфидов урана или тория, которые обладают полупроводниковыми свойствами.

Литература : Алиевский Б. Л. Специальные электрические машины. М.: Энергоатомиздат, 1994г.