Ссылка на архив

Теория относительности А.Эйнштейна

Министерство образования РФ

Северо-Кавказский гуманитарный технический институт

РЕФЕРАТ

по физике

на тему: «Теория относительности Эйнштейна»

Автор работы: Чаплина Г.В.

Ставрополь 2002
Содержание

Введение. 3

1. Предпосылки создания теории относительности А.Эйнштейна. 5

1.1. Относительность движения по Галилею.. 5

1.2. Принцип относительности и законы Ньютона. 6

1.3. Преобразования Галилея. 6

1.4. Принцип относительности в электродинамике. 7

1.5. Преобразования Лоренца. 8

1.6. Преобразование физических величин в релятивистской теории. 8

2. Теория относительности А.Эйнштейна. 9

2.1. Частная (специальная) теория относительности. 9

2.2. Общая теория относительности. 10

Заключение. 13

Литература. 15


Введение

Принцип относительности – фундаментальный физический закон, согласно которому любой процесс протекает одинаково в изолированной материальной системе, находящейся в состоянии покоя, и в такой же системе в состоянии равномерного прямолинейного движения. Состояния движения или покоя определяются по отношению к произвольно выбранной инерциальной системе отсчета. Принцип относительности лежит в основе специальной теории относительности Эйнштейна.

Инерциальная система – понятие классической механики, первой фундаментальной физической теории, которая имеет высокий статус и в современной физике. Основы этой теории заложил И.Ньютон.

«Всякое тело продолжает удерживаться в своем состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние» – так Ньютон сформулировал закон, который сейчас называется первым законом механики Ньютона, или законом инерции.

Система отсчета, в которой справедлив закон инерции: материальная точка, когда на нее не действуют никакие силы (или действуют силы взаимно уравновешенные), находится в состоянии покоя или равномерного прямолинейного движения, – называется инерциальной. Всякая система отсчета, движущаяся по отношению к ней поступательно, равномерно и прямолинейно, есть также инерциальная.

Теория относительности – физическая теория пространства и времени. В частной (специальной) теории относительности рассматриваются только инерциальные системы отсчета. Явления, описываемые теорией относительности, называются релятивистскими (от лат. «относительный») и проявляются при скоростях, близких к скорости света в вакууме (эти скорости тоже принято называть релятивистскими).

Существует фактически две различных теории относительности, известных в физике, одна из них называется специальной (частной) теорией относительности, другая – общей теорией относительности. Альберт Эйнштейн предложил первую из них в 1905 г., вторую – в 1916 г. Принимая во внимание, что специальная теория относительности связана, в первую очередь, с электрическими и магнитными явлениями и с их распространением в пространстве и времени, общая теория относительности была разработана, прежде всего, чтобы иметь дело с тяготением. Обе теории сосредотачиваются на новых подходах к пространству и времени, подходах, которые отличаются глубоко от тех, которые используются в каждодневной жизни; но релятивистские понятия пространства и времени неразрывно вплетаются в любую современную интерпретацию физических явлений в пределах от атома до вселенной в целом.

Рассмотрим последовательное развитие этих теорий.


1. Предпосылки создания теории относительности А.Эйнштейна

1.1. Относительность движения по Галилею

Важную роль в создании научной картины мира сыграл принцип относительности одного из основоположников современного естествознания Галилея – принцип равноправия всех инерциальных систем отсчета в классической механике, который утверждает, что никакими механическими опытами, проводящимися в какой-то инерциальной системе отсчета, нельзя определить, покоится данная система или движется равномерно и прямолинейно.

Математически принцип относительности Галилея выражает инвариантность уравнений механики относительно преобразований координат движущихся точек (и времени) при переходе от одной инерциальной системы отсчета к другой – преобразований Галилея.

Впервые положение об относительности механического движения было высказано Галилео Галилеем в 1638 г. в его труде «Диалог о двух основных системах мира – птоломеевой и коперниковой». Там же сформулирован один из фундаментальных принципов физики – принцип относительности. Галилей использовал наглядный и образный метод изложения. Он писал, что находясь «в помещении под палубой корабля» и проводя опыты и наблюдения над всем, что там происходит, нельзя определить, покоится ли корабль, или же он движется «без толчков», то есть равномерно и прямолинейно. При этом подчеркивались два положения, составляющие суть принципа относительности:

1) движение относительно: по отношению к наблюдателю «в помещении под палубой» и к тому, кто смотрит с берега, движение выглядит по-разному;

2) физические законы, управляющие движением тел в этом помещении, не зависят от того, как движется корабль (если только это движение равномерно). Иначе говоря, никакие опыты в «закрытой кабине» не позволяют определить, покоится кабина или движется равномерно и прямолинейно.

Таким образом, Галилей сделал вывод, что механическое движение относительно, а законы, которые его определяют, абсолютны, то есть безотносительны. Эти положения коренным образом отличались от общепринятых в то время представлений Аристотеля о существовании «абсолютного покоя» и «абсолютного движения».

1.2. Принцип относительности и законы Ньютона

Принцип относительности Галилея органически вошел в созданную И. Ньютоном классическую механику. Ее основу составляют три «аксиомы» – три знаменитых закона Ньютона. Уже первый из них, гласящий: «Всякое тело продолжает удерживаться в своем состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не принуждается приложенными силами изменить это состояние», говорит об относительности движения и одновременно указывает на существование систем отсчета (они были названы инерциальными), в которых тела, не испытывающие внешних воздействий, движутся «по инерции», не ускоряясь и не замедляясь. Именно такие инерциальные системы имеются в виду и при формулировке двух остальных законов Ньютона. При переходе из одной инерциальной системы в другую меняются многие величины, характеризующие движение тел, например, их скорости или формы траектории движения, но законы движения, то есть соотношения, связывающие эти величины, остаются постоянными.

1.3. Преобразования Галилея

Чтобы описывать механические движения, то есть изменение положения тел в пространстве, Ньютон четко сформулировал представления о пространстве и времени. Пространство мыслилось как некий «фон», на котором развертывается движение материальных точек. Их положение можно определять, например, с помощью декартовых координат  x,  у,  z, зависящих от времени  t. При переходе из одной инерциальной системы отсчета  К в другую  К', движущуюся по отношению к первой вдоль оси  x со скоростью  v, координаты преобразуются:  x' = x - v×t, y' = у, z' = z, а время остается неизменным:  t' = t. Таким образом принимается, что время абсолютно. Эти формулы получили название преобразований Галилея.

По Ньютону, пространство выступает как некая координатная сетка, на которую не влияет материя и ее движение. Время в такой «геометрической» картине мира как бы отсчитывается некими абсолютными часами, ход которых ничто не может ни ускорить, ни замедлить.

1.4. Принцип относительности в электродинамике

Принцип относительности Галилея более трехсот лет относили только к механике, хотя в первой четверти 19 в., прежде всего благодаря трудам М.Фарадея, возникла теория электромагнитного поля, получившая затем дальнейшее развитие и математическую формулировку в работах Дж.К. Максвелла. Но перенос принципа относительности на электродинамику представлялся невозможным, так как считалось, что все пространство заполнено особой средой – эфиром, натяжения в котором и истолковывались как напряженности электрического и магнитного полей. При этом эфир не влиял на механические движения тел, так что в механике он «не чувствовался», но на электромагнитных процессах движение относительно эфира («эфирный ветер») должно было сказываться. В результате находящийся в закрытой кабине экспериментатор при помощи наблюдения над такими процессами мог, казалось, определить, находится ли его кабина в движении (абсолютном!), или же она покоится. В частности, ученые полагали, что «эфирный ветер» должен влиять на распространение света. Попытки обнаружить «эфирный ветер», однако, не увенчались успехом, и концепция механического эфира была отвергнута, благодаря чему принцип относительности как бы родился заново, но уже как универсальный, справедливый не только в механике, но и в электродинамике, и других областях физики.

1.5. Преобразования Лоренца

Подобно тому, как математической формулировкой законов механики являются уравнения Ньютона, уравнения Максвелла являются количественным представлением законов электродинамики. Вид этих уравнений также должен оставаться неизменным при переходе из одной инерциальной системы отсчета в другую. Чтобы удовлетворить этому условию, необходимо заменить преобразования Галилея иными:  x'= g(x-vt);  y'= y;  z'=z;  t'=g(t-vx/c2), где g = (1-v2/ c2)-1/2, а  с – скорость света в вакууме. Последние преобразования, установленные Х. Лоренцем в 1895 и носящие его имя, являются основой специальной (или частной) теории относительности. При  v£c они переходят в преобразования Галилея, но если  v близко к c, то проявляются существенные отличия от картины пространства – времени, которую принято называть нерелятивистской. Прежде всего, обнаруживается несостоятельность привычных интуитивных представлений о времени, выясняется, что события, которые происходят одновременно в одной системе отсчета, перестают быть одновременными в другой. Меняется и закон преобразования скоростей.

1.6. Преобразование физических величин в релятивистской теории

В релятивистской теории пространственные расстояния и промежутки времени не остаются неизменными при переходе из одной системы отсчета в другую, движущуюся относительно первой со скоростью v. Длины сокращаются (в направлении движения) в 1/g раз, и в такое же число раз «растягиваются» промежутки времени. Относительность одновременности – основная принципиально новая черта современной частной теории относительности.


2. Теория относительности А.Эйнштейна

Альберт Эйнштейн (Einstein) (1879-1955) – физик-теоретик, один из основателей современной физики, лауреат Нобелевской премии, иностранный член-корреспондент РАН (1922) и иностранный почетный член АН СССР (1926). Родился в Германии, с 1893 жил в Швейцарии, с 1914 в Германии, в 1933 эмигрировал в США. Создал частную (1905) и общую (1907-16) теории относительности.

2.1. Частная (специальная) теория относительности

Наибольшую известность Эйнштейну принесла теория относительности, изложенная им впервые в 1905 г. в статье «К электро-динамике движущихся тел». Уже в юности Эйнштейн пытался понять, что увидел бы наблюдатель, если бы бросился со скоростью света вдогонку за световой волной. Будучи студентом, Эйнштейн изучал труды Максвелла, был убежден в существовании всепроникающего эфира и размышлял о том, как на него действуют различные поля (в частности, магнитное) и как можно экспериментально обнаружить движение относительно эфира. Теперь Эйнштейн решительно отверг концепцию эфира, что позволило рассматривать принцип равноправия всех инерциальных систем отсчета как универсальный, а не только ограниченный рамками механики. Исходя из невозможности обнаружить абсолютное движение, Эйнштейн сделал вывод о равноправии всех инерциальных систем отсчета. Он сформулировал два важнейших постулата, делавших излишней гипотезу о существовании эфира, которые составили основу обобщенного принципа относительности:

1) все законы физики одинаково применимы в любой инерциальной системе отчета и не должны меняться при преобразованиях Лоренца;

2) свет всегда распространяется в свободном пространстве с одной и той же скоростью, независимо от движения источника.

Эйнштейн выдвинул удивительный и на первый взгляд парадоксальный постулат, что скорость света для всех наблюдателей, как бы они ни двигались, одинакова. Этот постулат (при выполнении некоторых дополнительных условий) приводит к полученным ранее Х. Лоренцем формулам для преобразований координат и времени при переходе из одной инерциальной системы отсчета в другую, движущуюся относительно первой. Но Лоренц рассматривал эти преобразования как вспомогательные, или фиктивные, не имеющие непосредственного отношения к реальному пространству и времени. Эйнштейн понял реальность этих преобразований, в частности, реальность относительности одновременности.

Таким образом, принцип относительности, установленный для механики еще Галилеем, был распространен на электродинамику и другие области физики. Это привело, в частности, к установлению важного универсального соотношения между массой  М, энергией  Е и импульсом  Р:  E2 =  М2×c4 +  P2×с2 (где  с – скорость света), которое можно назвать одной из теоретических предпосылок использования внутриядерной энергии.

2.2. Общая теория относительности

В 1905 г. Эйнштейну было 26 лет, но его имя уже приобрело широкую известность. В 1909 г. он избран профессором Цюрихского университета, а через два года – Немецкого университета в Праге. В 1912 г. Эйнштейн возвратился в Цюрих, где занял кафедру в Политехникуме, но уже в 1914 г. принял приглашение переехать на работу в Берлин в качестве профессора Берлинского университета и одновременно директора Института физики. Германское подданство Эйнштейна было восстановлено. К этому времени уже полным ходом шла работа над общей теорией относительности. В результате совместных усилий Эйнштейна и его бывшего студенческого товарища М. Гроссмана в 1912 г. появилась статья «Набросок обобщенной теории относительности», а окончательная формулировка теории датируется 1915 г. Эта теория, по мнению многих ученых, явилась самым значительным и самым красивым теоретическим построением за всю историю физики. Опираясь на всем известный факт, что «тяжелая» и «инертная» массы равны, удалось найти принципиально новый подход к решению проблемы, поставленной еще И. Ньютоном: каков механизм передачи гравитационного взаимодействия между телами и что является переносчиком этого взаимодействия.

Ответ, предложенный Эйнштейном, был ошеломляюще неожиданным: в роли такого посредника выступала сама «геометрия» пространства – времени. Любое массивное тело, по Эйнштейну, вызывает вокруг себя «искривление» пространства, то есть делает его геометрические свойства иными, чем в геометрии Евклида, и любое другое тело, движущееся в таком «искривленном» пространстве, испытывает воздействие первого тела.

Созданная А. Эйнштейном общая теорией относительности является обобщением ньютоновской теории тяготения на основе специальной теории относительности. В основе общей теории относительности лежит принцип эквивалентности – локальной неразличимости сил тяготения и сил инерции, возникающих при ускорении системы отсчета. Этот принцип проявляется в том, что в заданном поле тяготения тела любой массы и физической природы движутся одинаково при одинаковых начальных условиях. Теория Эйнштейна описывает тяготение как воздействие физической материи на геометрические свойства пространства-времени; в свою очередь, эти свойства влияют на движение материи и другие физические процессы. В таком искривленном пространстве-времени движение тел «по инерции» (т.е. при отсутствии внешних сил, кроме гравитационных) происходит по геодезическим линиям, аналогичным прямым в неискривленном пространстве, но эти линии уже искривлены. В сильном поле тяготения геометрия обычного трехмерного пространства оказывается неевклидовой, а время течет медленнее, чем вне поля.

Общая теория относительности привела к предсказанию эффектов (конечной скорости изменения поля тяготения, равной скорости света в вакууме – это изменение переносится в виде гравитационных волн; возможности возникновения черных дыр и др.), которые вскоре получили экспериментальное подтверждение. Она позволила также сформулировать принципиально новые модели, относящиеся ко всей Вселенной, в том числе и модели нестационарной (расширяющейся) Вселенной.

Из уравнений релятивистской механики (как и механики Ньютона) вытекает закон сохранения энергии, для которого получается новое выражение:  E = mc2. Это – знаменитое соотношение Эйнштейна, связывающее массу тела и его энергию. Иногда это соотношение ошибочно истолковывают как указание на возможность взаимных превращений массы и энергии. В действительности же оно означает лишь то, что масса всегда пропорциональна энергии. В частности, наличие у покоящейся частицы массы говорит и о наличии у нее энергии (энергии покоя), что не играет роли в классической механике, но приобретает принципиальное значение при рассмотрении процессов, в которых число и сорт частиц может изменяться и поэтому энергия покоя может переходить в другие формы. В атомных ядрах энергия притяжения частиц приводит к тому, что общая масса ядра оказывается меньше суммы масс отдельных частиц (дефект массы). Установление этого факта явилось одним из важнейших шагов к возникновению ядерной энергетики, так как позволило оценить ту значительную энергию, которая должна высвобождаться при делении тяжелых и слиянии легких ядер.


Заключение

Теория относительности А.Эйнштейна – физическая теория, рассматривающая пространственно-временные свойства физических процессов. Так как закономерности, устанавливаемые теорией относительности, – общие для всех физических процессов, то обычно о них говорят просто как о свойствах пространства-времени. Эти свойства зависят от полей тяготения в данной области пространства-времени. Теория, описывающая свойства пространства-времени в приближении, когда полями тяготения можно пренебречь, называется специальной или частной теорией относительности, или просто теорией относительности. Свойства пространства-времени при наличии полей тяготения исследуются в общей теории относительности, называемой также теорией тяготения Эйнштейна. Физические явления, описываемые теорией относительности, называются релятивистскими и проявляются при скоростях v движения тел, близких к скорости света в вакууме  с.

В основе теории относительности лежат два положения: принцип относительности, означающий равноправие всех инерциальных систем отсчета, и постоянство скорости света в вакууме, ее независимость от скорости движения источника света. Эти два постулата определяют формулы перехода от одной инерциальной системы отсчета к другой – преобразования Лоренца, для которых характерно, что при таких переходах изменяются не только пространственные координаты, но и моменты времени (относительность времени). Из преобразований Лоренца получаются основные эффекты специальной теории относительности: существование предельной скорости передачи любых взаимодействий – максимальной скорости, до которой можно ускорить тело, совпадающей со скоростью света в вакууме; относительность одновременности (события, одновременные в одной инерциальной системе отсчета, в общем случае не одновременны в другой); замедление течения времени в быстро движущемся теле и сокращение продольных – в направлении движения – размеров тел и др. Все эти закономерности теории относительности надежно подтверждены на опыте.

Теория относительности выявила ограниченность представлений классической физики об «абсолютных» пространстве и времени, неправомерность их обособления от движущейся материи; она дает более точное, по сравнению с классической механикой, отображение объективных процессов реальной действительности.

Ряд выводов общей теории относительности качественно отличаются от выводов ньютоновской теории тяготения. Важнейшие среди них связаны с возникновением черных дыр, сингулярностей пространства-времени, существованием гравитационных волн (гравитационного излучения).

Представления о пространстве и времени составляют основу физического миропонимания, что уже само по себе определяет значение теории относительности. Особенно велика ее роль в физике ядра и элементарных частиц, в том числе и для расчетов гигантских установок, которые предназначены для потоков очень быстрых частиц, необходимых для экспериментов, позволяющих продвинуться в изучении строения материи.


Литература

1. Горелов А.А. Концепции современного естествознания. – М.: Владос, 2000. – 512 с.

2. Григорьев В.Н. Альберт Эйнштейн // Большая энциклопедия Кирилла и Мефодия. – М., 2001.

3. Данилова В.С., Кожевников Н.Н. Основные концепции естествознания. – М.: Аспект Пресс, 2000. – 256 с.

4. Концепции современного естествознания / Под ред. В.Н. Лавриненко, В.П. Ратникова. – М.: ЮНИТИ, 2000. – 203 с.

5. Концепции современного естествознания / Самыгин С.И. и др. – Ростов н/Д.: Феникс, 1997. –  448 с.

6. Рузавин Г.И. Концепции современного естествознания: Курс лекций. – М.: Проект, 2002. – 336 с.

7. Солопов Е.Ф. Концепции современного естествознания. – М.: Владос, 1999. – 232 с.

8. Хорошавина С.Г. Концепции современного естествознания: Курс лекций. – Ростов н/Д.: Феникс, 2002. – 480 с.