Ссылка на архив

Научно-технический прогресс газотурбинных установок магистральных газопроводов

В современной технике разработано и используется множество различных типов двигателей. В данной работе рассматривается лишь один тип – газотурбинные двигатели (ГТД), т.е. двигатели, имеющие в своём составе компрессор, камеру сгорания и газовую турбину. ГТД широко применяются в авиационной, наземной и морской технике (рис. 1). В настоящее время в общем объёме мирового производства ГТД в стоимостном выражении авиационные двигатели составляют около 70%, наземные и морские – около 30%. Объём производства наземных и морских ГТД распределяется следующим образом:

- энергетические ГТД ~ 91%;

- ГТД для привода промышленного оборудования и наземного транспорта ~ 5%;

- ГТД для привода судовых движителей ~ 4%.

Рис. 1. Классификация ГТД по назначению и объектам применения.

В современной гражданской и военной авиации ГТД практически полностью вытеснили поршневые двигатели и заняли доминирующее положение. Их широкое применение в энергетике, промышленности и транспорте стало возможным благодаря более высокой энергоотдаче, компактности и малому весу по сравнению с другими типами силовых установок. Высокие удельные параметры ГТД обеспечиваются особенностями конструкции и термодинамического цикла. Цикл ГТД, хотя и состоит из тех же основных процессов, что и цикл поршневых двигателей внутреннего сгорания, имеет существенное отличие. В поршневых двигателях процессы происходят последовательно, один за другим, в одном и том же элементе двигателя – цилиндре. В ГТД эти процессы происходят одновременно и непрерывно в различных элементах двигателя. Благодаря этому в ГТД нет такой неравномерности условий работы элементов двигателя, как в поршневом, а средняя скорость и массовый расход рабочего тела в 50…100 раз выше, чем в поршневых двигателях. Это позволяет сосредоточить в ГТД большие мощности. Авиационные ГТД по способу создания тягового усилия относятся к классу реактивных двигателей, классификация которых показана на рис. 1.2.

Рис. 1.2. Классификация реактивных двигателей.


Среди реактивных двигателей можно выделить две основные группы.

Первую группу составляют ракетные двигатели. Они создают тяговое усилие за счёт ускорения рабочего тела, запасённого на борту летательного аппарата (ЛА). В настоящее время наибольшее распространение получили жидкостные реактивные двигатели (ЖРД) и ракетные двигатели твёрдого топлива (РДТТ). Первые из них используют двухкомпонентное жидкое топливо – размещённые в разных ёмкостях горючее и окислитель. А вторые твердое топливо, которое содержит горючие и окисляющие компоненты и целиком размещается в камере сгорания. Ракетные двигатели применяются в основном в ракетах различного назначения и могут использоваться для полетов в безвоздушном пространстве (в космосе), так как для создания силы тяги им не требуется окружающая среда.

Ко второй группе относятся воздушно-реактивные двигатели (ВРД), для которых атмосферный воздух является основным компонентом рабочего тела, а кислород воздуха используется как окислитель. Задействование воздушной среды позволяет значительно сократить запас рабочего тела на борту ЛA, повысить экономичность и дальность полета.

В свою очередь, ВРД подразделяются на две основные подгруппы.

1. Бескомпрессорные ВРД, включающие прямоточные (ПВРД) и пульсирующие (ПуВРД) двигатели. В прямоточных ВРД воздух сжимается за счет скоростного напора. Двигатели могут применяться для сверхзвуковых скоростей полета при Мп > 2...3 (СПВРД) и гиперзвуковых скоростей (ГПВРД, Мп > 6...7). Однако прямоточные ВРД не имеют стартовой тяги. Этот органический недостаток ПВРД можно исправить переходом к пульсирующему процессу подачи воздуха и сжиганию топлива при постоянном объеме. Такой процесс реализован в ПуВРД. В них сжатие воздуха происходит без использования скоростного напора и компрессора. ПуВРД использовались в Германии в конце Второй мировой войны на крылатых ракетах "V-1", но дальнейшего развития не получили. В последнее время интерес к пульсирующим ВРД возобновился. Активно изучаются так называемые импульсные детонационные двигатели, в которых тяга дискретно создается за счет ударных волн, образующихся в результате детонационного (взрывного) сгорания топлива в камере сгорания.

2. Газотурбинные ВРД, получившие свое название из-за наличия турбокомпрессорного агрегата, имеющего в своем составе газовую турбину как основной источник механической энергии. Классификация авиационных ГТД показана на рис. 1.2.

ВРД отдельных типов могут быть конструктивно объединены друг с другом или с ракетными двигателями в единой двигательной установке. Такие комбинированные двигатели совмещают в себе положительные качества исходных двигателей. Например, в турбопрямоточном двигателе сочетаются возможность самостоятельного старта ТРД и работоспособность при высоких сверхзвуковых скоростях полета СПВРД. Группа комбинированных двигателей может включать большое число схем и вариантов, наиболее характерные турбопрямоточный, ракетно-прямоточный, ракетно-турбинный показаны на рис. 1.2.

Реактивные двигатели, в которых вся полезная работа цикла затрачивается на ускорение рабочего тела, называются двигателями прямой реакции. К ним относятся ракетные двигатели всех типов, комбинированные двигатели, прямоточные и пульсирующие ВРД, а из группы ГТД - турбореактивные двигатели (ТРД) и двухконтурные турбореактивные двигатели (ТРДД) (см. рис. 1.2). Если же основная часть полезной работы цикла в виде механической работы на валу двигателя передается специальному движителю, например воздушному винту, то такой двигатель называется двигателем непрямой реакции. Примерами двигателей непрямой реакции являются турбовинтовой двигатель (ТВД) и вертолетный ГТД. Классическим примером двигателя непрямой реакции может служить также поршневая винтомоторная установка. Качественного отличия по способу создания тягового усилия между ней и турбовинтовым двигателем нет.


Рис. 1.3. Области применения ВРД: 1 – вертолётные ГТД, 2 – ТВД и ТВВД, 3 – ТРДД, 4 – ТРД, 5 – ТРДФ и ТРДДФ, 6 – ТПД, СПВРД, 7 – ГПВРД.

газотурбинный механический привод электрогенератор

Применение ГТД в военной и гражданской авиации, начавшееся после Второй мировой войны, позволило совершить качественный скачок в развитии авиации: освоить большие высоты полета и сверхзвуковые скорости с числом Маха до 3,0...3,3, значительно повысить грузоподъемность и дальность.


1. История развития ГТД

ГТД во второй половине ХХ века стали доминирующими в военной и гражданской авиации. Они обеспечили значительно большие отношения тяги к массе двигателя, лобовые мощности и лобовые тяги по сравнению с предшествовавшими поршневыми двигателями.

Хотя принципиальные схемы ТВД и ТРД были предложены в ряде стран ещё в первой четверти ХХ века, реализация их как эффективных и надёжных двигателей стала возможной лишь в результате синтеза аэродинамического совершенства лопаточных машин и достижении в металлургии.

Речь идет о достаточных КПД компрессоров и турбин и длительной термопрочности конструкционных материалов, которая допускает довольно высокий уровень температуры газа перед турбиной. Условие существования ТРД

сж – ηрасш)min

показывает, что при и ηсж = ηрасш ≤ 0,7, например, температура газа перед турбиной должна быть более Тг = 930 К.

1.1 Россия

Не умаляя роли передовых промышленных стран, таких как Германия и Англия, следует отметить достойный вклад русских учёных и инженеров в создание и развитие газотурбинной техники.


Рис. 2. Конструктивная схема ТРД : а – М.Н. Никольского, б – В.И. Базарова

Основополагающими теоретическими разработками в области реактивного движения и лопаточных машин были ещё дореволюционные труды учёных И.В. Мещерского, Н.Е. Жуковского, К.Э. Циолковского. К началу ХХ века относятся первые проекты ГТД русских инженеров: П. Кузьминского (1900 г.), В. Караводина (1908 г.), Н. Герасимова (1909 г.), А. Горохова (1911 г.), М. Никольского (1914 г.). Изготовление опытного турбовинтового (турборакетного) двигателя мощностью 160 л. с. по проекту М. Никольского (рис. 2 а) было начато в 1914 г. на Русско-Балтийском заводе для замены немецкого поршневого двигателя "Аргус" мощностью 140 л. с. на самолёте "Илья Муромец". Однако в дореволюционной России не появились какие-либо серийные авиационные двигатели собственной разработки (даже поршневые). После 1917 г. развитию авиации со стороны государства уделялось повышенное внимание. После организации ЦАГИ (1 декабря 1918 г.) НТО ВСНХ 4 декабря 1918г. выделил Аэродинамическому институту 212 650 рублей на окончание работ 1918г.

В 1918 г. ВСНХ РСФСР была организована научная автомобильная лаборатория (позднее преобразованная в НАМИ) с отделением авиационных двигателей.

22 мая 1919 г. в ЦАГИ создано винтомоторное отделение во главе с инженером-механиком Б.С. Стечкиным. Уже в 1929 г. Б.С. Стечкин разработал и опубликовал теорию ВРД, получившую всеобщее признание в нашей стране и за рубежом.

В 1923 г. инженер-конструктор В.И. Базаров подал заявку на вполне современную схему одновального ТРД с центробежным компрессором (см. рис. 2, б).

В 1925 г. преподаватели МВТУ Н.Р. Бриллинг и В.В. Уваров обосновали возможность создания мощного авиационного ТВД.

В 1926 г. в НАМИ организована группа, занимавшаяся изучением циклов и схем ГТД, а также процессами горения. Руководство группой осуществляет Н.Р. Бриллинг. В 1929 г. работу этой группы при ВТИ возглавил В.В. Уваров, сосредоточившийся на создании высокопараметрических ТВД и газотурбинных установок (ГТУ). Так называемой "Газовой группе" В.В. Уварова было поручено спроектировать экспериментальные стационарную ГТУ и авиационный ТВД мощностью 1500 л.с.

В 1933 г. ГТУ-1 была спроектирована, а в 1935 г. — собрана и испытана на Коломенском машиностроительном заводе. Общее время испытаний ГТУ-1 при температуре 1120...1370 К составило 21 час.

В 1935 г. разработан первый проект высокопараметрического авиационного ТВД ГТУ-3 (рис. 3) с расчетной мощностью 1500 л.с., испытания которого проходили в 1937—1939-х гг.

ГТУ-3 имел три центробежные ступени компрессора с и двухступенчатую осевую турбину. Турбина охлаждалась дистиллированной водой, так как расчетная температура газа перед ней была 1470 К. Применение пароводяного охлаждения позволяло выдерживать забросы фактической температуры на испытаниях до 1870 К и длительно работать до 1620 К, используя самый жаропрочный материал того времени ЭИ-69 (с рабочей температурой не выше 920…970 К). Суммарная наработка ГТУ-3 составила 57 часов, однако заданная мощность не была достигнута, и горячие испытания ГТУ-3 в 1941 году были прекращены.

3 декабря 1930 г. на базе винтомоторного отдела ЦАГИ и авиамоторного отдела НАМИ был создан ЦИАМ (Центральный институт авиамоторного моторостроения), и в 1940 г. группу В.В. Уварова из ВТИ перевели в ЦИАМ.

Рис. 3. Схема ТВД ГТУ-3 конструкции В.В. Уварова

В 1943 г. в отделе № 8 ЦИАМ спроектирован и в 1945 г. испытан ТВД Э-30-80 (рис. 4) с расчетной температурой газа перед турбиной 1520 К.

В 1947 г. работы по заданной теме переводятся на завод №41, выпускавший поршневые двигатели М-11, а В.В. Уваров назначается главным конструктором завода. Здесь были созданы модификации Э-30-80-2с, Э-30-80А, Э-30-80М, которые прошли 25-часовые испытания, но в 1948 г. работы были прекращены.

В это же время в ЦИАМ были разработаны ТВД Э-30-81А мощностью 3500 л.с. по той же схеме, но с воздушным охлаждением и с использованием более жаропрочного никелевого сплава типа Нимоник (ЭИ-437), которые в количестве пяти штук прошли частичные испытания. В 1949г. все работы по ТВД схемы В.В. Уварова были прекращены в связи с успехами в проектировании ТВД с осевыми компрессорами в других ОКБ. В.В. Уваров перешел в МВТУ и возглавил созданную им кафедру газовых турбин.

Работы над проектированием и созданием ТРД, не имевших винта и способных обеспечить в несколько раз большие, чем ТВД, скорости полета, начал в 1937 г. А.М. Люлька. Сотрудник Харьковского авиационного института Люлька специалист по паротурбинной технике. Он в инициативном порядке разработал проекты ТРД как с центробежным одно- и двухступенчатым компрессором (РТД-1, 1937 г.), так и с осевым компрессором (РД-1,1938 г.) (рис. 5). Рабочие чертежи выбранного ТРД РД-1 с осевым компрессором и с тягой 500 кгс были сданы в производство на Кировский завод в Ленинграде в 1940 г. Двигатель имел шестиступенчатый компрессор с = 3,2 и относительно невысокую температуру газа перед турбиной = 923 К.

Рис. 4. Схема ТВД Э-30-80 конструкции В.В. Уварова

В 1941 г. началась сборка двигателя РД-1, приостановленная с началом Великой Отечественной войны. В 1942 г. узлы РД-1 и документация были вывезены в ЦИАМ. Работы в ЦИАМ по ТРД под руководством А.М. Люльки возобновились только в 1943 году (А.М. Люлька некоторое время работал на танковом заводе в Челябинске и в КБ Болховитинова). Двигатель был модернизирован — его тяга увеличилась до 1200 кгс — и получил обозначение С-18 (стендовый). В марте 1944 г. было получено задание от Наркомата на изготовление пяти экземпляров С-18, а коллектив А.М. Люльки был переведён в НИИ-1, где сосредотачивались все работы по реактивной технике. В сентябре 1944 г. двигатель С-18 собран и испытан. В процессе первых испытаний выявилось большое количество дефектов, наиболее разрушительным из которых был помпаж компрессора. К концу войны в НИИ-1 появились трофейные немецкие двигатели Юмо-004 и BMW-003 с тягой 900 и 800 кгс, однако довод и развитие ТРД С-18 были продолжены, и на его базе был спроектирован ТРД ТР-1 с тягой 1350 кгс. Копирование ТРД Юмо и BMW было поручено другим ОКБ. После успешного испытания двигателя С-18 в конце 1945 г. работы по TP-1 форсировались. К их изготовлению малой серией был подключен завод № 45 (ММПП "Салют") и было организовано новое конструкторское бюро ОКБ-165, которое возглавил А.М. Люлька. В августе 1946 г. ТР-1 поставлен на испытания. В феврале 1947 г. проведены государственные испытания – получена тяга 1290 кгс и ресурс 20 часов. В течение 1948-1950-х гг. создаётся ряд модификаций с последовательно увеличивающейся тягой, вплоть до тяги 5000 кгс на двигателе ТР-3А, названном АЛ-5. Двигатели изготовлялись малой серией и устанавливались на опытных самолётах Ильюшина, Сухого, Лавочкина. 1950-е гг. под руководством А.М. Люльки был создан ряд ТРД типа АЛ-7Ф с = 9.. .10 и К в классе тяг 6500…10000 кгс.

В 1966 г. появились высокопараметрические одновальные ТРД типа АЛ-21Ф с  = 12,5... 15 и К в классе тяг 8900... 11400 кгс, установленные на самолетах Су-17М, МиГ-23Б, Су-24М.

В 1985 г. создан один из лучших военных двигателей АЛ-31Ф с тягой 12500 кгс. Он имел очень высокие параметры цикла: = 23, К, а главное – был двухконтурным при наличии ФК (степень двухконтурности m = 0,6).

Так, через 44 года было реализовано собственное изобретение A.M. Люльки ТРДД. На это изобретение Люлька получил авторское свидетельство № 312328/25 от 22 апреля 1941 г.

Следует отметить, что первые отечественные двухконтурные двигатели начали создаваться в 1950-х гг. в других ОКБ. Это двигатели Д-20 конструкции П.А. Соловьёва и НК-6 конструкции Н.Д. Кузнецова, представлявшие собой двухвальные ТРДД со степенью двухконтурности 1,5 и 2,0 и с форсажом в наружном контуре. Двигатели НК-6 и Д-20 не производились серийно, но они послужили базой для создания многих хорошо известных ТРДД и ТРДДФ различного назначения, выпускавшихся большими сериями: Д-20П, Д-30, Д-30КУ/КП, Д-30Ф6, НК-8, НК-86, НК-144-22, НК-32.

Первым отечественным серийным ТРДД был двухвальный Д-20П конструкции П.А. Соловьёва, прошедший 100-часовые испытания в декабре 1959 г. и оснащавший самолёт Ту-124.

Рис. 5. Схемы ТРД РТД-1 и РД-1 конструкции А.М. Люльки

Выдвинутая еще в предвоенные годы техническая идея А.М. Люльки во второй половине XX века была широко реализована во всем мировом авиадвигателестроении ТРДД стали доминирующими как в гражданской, так и в военной авиации.

Бесспорно, что российские ученые и конструкторы, и прежде всего - Б.С. Стечкин, В.В. Уваров, А.М. Люлька, В.Я. Климов, С.К. Туманский, В.А. Добрынин, Н.Д. Кузнецов, П.А. Соловьев, С.П. Изотов, внесли выдающийся вклад в развитие современного мирового газотурбинного авиадвигателестроения.

В послевоенные годы развитие отечественной газотурбинной авиационной техники, опираясь на собственные предшествующие исследования и разработки, а также на изучение трофейных немецких и закупленных английских ТРД, шло широким фронтом и высокими темпами во многих двигателестроительных КБ.

Наряду с развитием ТРД отечественных конструкций в конце 1940-х гг. стали серийно выпускаться ТРД с осевыми и центробежными компрессорами:

- РД-10 (Юмо-004) с тягой 920 кгс - выпускался в Уфе в 1946-1949-х гг. для истребителей Як-15, -17, -19; Лa-150, -152, -156; Су-9;

- РД-20 (BMW-003) с тягой 800 кгс - выпускался в Казани в 1945-1954-х гг. для истребителей МиГ-9, И-300, И-301Т;

- РД-500 (Дервент V) с тягой 1590 кгс - выпускался в Москве на заводе № 500 (ММП им. Чернышева) в 1947-1950-х гг. и в Запорожье в 1956 г. для самолетов Лa-15, Як-23, Су-13, Лa-180, Ту-14;

- РД-45 и РД-45Ф (Нин-1 и Нин-2) стягами 2040 и 2270 кгс - выпускались в Уфе в 1947-1955-х гг. и в Запорожье в 1953-1958-х гг. для самолетов МиГ-15, Су-15, Ла-168, -176, И-20 (КБ Микояна).

В один и тот же день, 27 апреля 1946 г., совершили первые полеты реактивные истребители Як-15 и МиГ-9. В конце 1947 г. первый полет совершил знаменитый истребитель МиГ- 15 с двигателем РД-45Ф.

В 1949 г. под руководством В.Я. Климова на базе двигателей Нин-1 и Нин-2 создан ТРД ВК-1 с тягой 2700 кгс, а в 1951 г. - ТРДФ ВК-1Ф с тягой 3380 кгс. Суммарный выпуск этих двигателей в период с 1949 по 1958 гг. составил 20 000 штук.

В период 1945-1946 гг. на территории Восточной Германии под руководством советского представителя Н.М. Олехновича дорабатывались и развивались модификации двигателей BMW-003 и Юмо-004. Это был ТВД BMW-109-028 (начало проектирования - 1940 г.) с двенадцатиступенчатым осевым компрессором, четырехступенчатой турбиной, с редуктором и двухрядным винтом противоположного вращения мощностью 7940 л.с., а также ТРД BMW-109-018 с трехступенчатой турбиной и тягой 3400 кгс.

С конца 1946 г. на заводе № 2 в Куйбышеве (Самара) с участием переведенных в ноябре 1946 г. немецких специалистов испытывались и дорабатывались два основных двигателя: ТРД BMW-018 с тягой 3400 кгс и ТРД Юмо-012 с тягой 3000 кгс (рис. 9). Первоначально эти двигатели разрабатывались и испытывались в 1946 г. в Германии в г. Штасфурте (главный конструктор К. Престель) и в г. Дессау (главный конструктор А. Шайбе).

Если BMW-018 использовался как экспериментальный и учебный, то Юмо-012 развивался и стал базой для создания ТВД ТВ-022 мощностью 5100 л.с. На двигателе ТВ-022 были сконцентрированы все силы завода № 2, после того как прибывший в мае 1949 г. из Уфы новый главный конструктор Н.Д. Кузнецов сменил на этом посту Н.М. Олехновича.

В 1950 г. прошел 200-часовые испытания ТВД ТВ-022, получивший позднее обозначение ТВ-2. В 1951 г. он был форсирован до 6250 л.с. и назван ТВ-2Ф. С двумя спаренными ТВ-2Ф опытный дальний тяжелый бомбардировщик Ту-95-1 выполнил шестнадцать полетов до катастрофической поломки редуктора 11 мая 1953 г.

В ноябре 1953 г. немецкие специалисты вернулись в ГДР в г. Пирна, где до 1960 г. под руководством д-ра Р. Шейноста создали ряд модификаций: ТРД Пирна-014, -020 и ТВД Пирна-018 (с тягами 3160…3730 кгс и мощностью 3680 л.с.).

В связи с катастрофой ТВД ТВ-2Ф было ускорено создание нового, самого мощного в мире ТВД НК-12. Он имел мощность 12500 л.с., четырнадцатиступенчатый компрессор на  = 9,5 и пятиступенчатую турбину с К. НК-12 прошел 100-часовые государственные испытания 25 декабря 1954 г. А 19 июня 1956 г. прошла госиспытания модификация ТВД НК-12М мощностью 15000 л.с. Двигатели НК-12 и НК-12М устанавливались на самолеты Ту-95, Ту-126, Ту-142, Ту-114, Ан-22 ("Антей") и экраноплан.

Такова история создания первых опытных и серийных отечественных авиационных ТРД и ТВД.

В середине 1950-х гг. создаются двигатели второго поколения. Из них наиболее выдающиеся ТРД и ТРДФ - РД-9Б, АЛ-7Ф, Р11-300, РД-3М, ВД-7, ТВД НК-12, АИ-20.

Рис. 6. Схемы ТРД из патентов Ф. Уиттла и Г. фон Охайна

В 1960-е и вначале 1970-х годов в эксплуатации появляются ТРДД - это Д-20П, Д-30, Д-30КУ/КП, НК-8-4, НК-8-2У, НК-144 и высокопараметрические ТРДФ АЛ-21Ф и Р27, -29-300.

Все эти двигатели относятся к двигателям третьего поколения с относительно высокими параметрами цикла  = 12…20, К и охлаждаемой турбиной.

С середины 1970-х годов по 1990-е годы в СССР созданы ряд выдающихся двигателей четвертого поколения — первые двигатели с большой степенью двухконтурности Д-36, Д-18, ПС-90А, а также военные ТРДДФ Д-30Ф6, НК-32, РД-33 и AЛ-31Ф, характеризующиеся высокими параметрами цикла  = 20…37, К, освоением новых технологий и материалов.

В середине 1980-х гг. начато создание двигателей пятого поколения — ТВВД НК-93 и Д-27 (с капотированным и открытым вентилятором) и ТРДДФ AЛ-41Ф, доводка которого продолжается. Более подробно параметры и конструктивный облик поколений ГТД приведены в табл. 1.


1.2 Германия

Пионерами развития турбореактивного авиадвигателестроения в Западной Европе были Фрэнк Уиттл (1907-1996) в Англии и Ганс фон Охайн (1911-1998) в Германии. Ф. Уиттл приблизительно на пять лет раньше Г. фон Охайна начал оформление концептуальной идеи ТРД (рис. 1.24) и ее патентование. Однако испытания первых двигателей-демонстраторов HeS 1 и W.U.-1 начались приблизительно в одно и то же время — в марте и апреле 1937 г.

Общим для обоих энтузиастов, создававших первые в мире работающие ТРД, было то, что первые расчеты и проекты они сделали еще в студенческие годы Ф. Уиттл в возрасте 22 лет на четвертом курсе колледжа Королевских ВВС в Корнуэлле, а затем на курсах инструкторов летной школы в Уиттеринге (1928 - 1929), а Г. фон Охайн также в возрасте 22 лет, при окончании Геттингенского университета (1933—1934).

Г. фон Охайна с 3 апреля 1936 г. работал по контракту с Э. Хейнкелем. И первый полет только на реактивной тяге был совершен на самолете Не-178 с двигателем его конструкции 27 августа 1939 г. — двигатель HeS3B с тягой 450 кгс (рис. 7). Несмотря на это Г. фон Охайну так и не удалось создать массовый серийный ТРД.


Рис. 8. Конструктивная схема ТРД Юмо-004

Наибольших успехов при создании первого массового серийного реактивного двигателя Юмо-004 (рис. 8) добился другой немецкий конструктор австрийского происхождения Анслем Франц (1900 - 1994). Он получил образование в Техническом университете г. Граца, а затем в докторантуре Берлинского университета. В 1936 г. А. Франц поступил в фирму "Юнкере" (г. Дессау). Он возглавлял отдел нагнетателей, когда в 1939 г. его назначили руководителем проекта ТРД Юмо-004.

В отличие от проектов Ф. Уиттла и Г. фон Охайна, основанных на применении центробежных компрессоров, для двигателя Юмо-004 была выбрана осевая схема компрессора, имеющая выигрыш по лобовой производительности и КПД.

Аэродинамика восьмиступенчатого компрессора на расход воздуха 21,2 кг/с и = 3,14 была основана на работах Института Аэродинамики в г. Геттингене. Компрессор проектировал доктор Энке. Наивысший КПД компрессора составлял 82 %, а в рабочих точках 75…78 %. Турбина с КПД 79...80 % создавалась на основе опыта разработки паровых турбин в AEG (г. Берлин). Признавая превосходство кольцевой камеры сгорания, А. Франц выбрал камеру с жаровыми трубами для ускорения доводки.

Первый запуск Юмо-004А состоялся весной 1940 г., а в январе 1941 г. двигатель был выведен на полные обороты n = 9000 об/мин с тягой 430 кгс. Тяга 1000 кгс была получена лишь в декабре 1941 г. Летные испытания опытного Юмо-004А начались 15 марта 1942 г. на летающей лаборатории Me-100. Первый полет (только на реактивной тяге) состоялся 18 июля 1942 г. на самолете Ме-262 с двумя двигателями Юмо-004А.

При доводке Юмо-004 были преодолены две большие проблемы:

- в первой половине 1941 г. повышенные вибрации и поломки лопаток СА компрессора;

- во второй половине 1943 г. повышенные вибрации и поломки рабочих лопаток турбины.

Первая проблема была вызвана консольной конструкцией лопаток СА компрессора, изготовленных из листа, а вторая резонансным возбуждением рабочих лопаток турбины шестью жаровыми трубами и тремя толстыми стойками за турбиной. Каждая проблема решалась в течение полугода с помощью известного специалиста по вибрациям лопаток доктора Макса Бентеле.

Массовая поставка серийного варианта Юмо-004В с тягой 900 кгс началась в марте 1944 г. Всего в Германии их было изготовлено 6424 шт. Двигатели устанавливались на истребителях Ме-262 (1400 шт.), бомбардировщиках Ю-287 и Арадо 234В (рис. 9).

После войны двигатель получил дальнейшее развитие (Юмо-012) с участием немецких и советских специалистов в Восточной Германии и в ОКБ завода № 2 г. Куйбышева (г. Самара) (рис. 10).

Рис. 9. Самолеты Ме-262А с двигателями Юмо-004 и Arado-234 с двигателями BMW-003 или Юмо-004


Одновременно в Германии на фирмах BMW и Bramo (г. Шпандау) создавался другой ТРД - BMW-003 (рис. 11). Он был близок по конструкции Юмо-004, но имел кольцевую камеру сгорания и несколько меньшую тягу – 800 кгс. Руководил разработкой Герман Ойстрих. BMW-003 был выпущен значительно меньшей серией, чем Юмо-004 и устанавливался на самолётах Не-162 и Arado-234. Герман Ойстрих впоследствии работал во французской фирме Snecma и вместе со 120 специалистами фирмы BMW создал там ТРД Atar-101.

В 1949 г. первый двигатель BMW был запущен, но он выдал тягу всего 260 кгс. Тягу 460 кгс BMW-003 показал на испытаниях на самолете Ме-262 только в ноябре 1941 г. Ме-262 имел, кроме этого, носовой поршневой двигатель. Испытания были неудачными. Уже при взлете были поломаны лопатки компрессора. Это привело к тому, что в дальнейшем предпочтение было отдано двигателю Юмо-004.

Первый серийный BMW-003А-0 был испытан полете в октябре 1943 г. Всего в Германии было построено около 700 шт. различных модификаций BMW-003. В 1940 г. фирма BMW начала проектировать также ТВД BMW-109-028 мощностью 7900 л.с. (рис. 12). Опыт проектирования этого двигателя был использован после войны в г. Куйбышеве (г. Самара) в ОКБ завода № 2.

1.3 Англия

Начатую Ф. Уиттлом в инициативном порядке программу создания и развития английских ТРД можно считать (как и немецкую программу Юмо-004) весьма успешной. Уиттл принял удачную концептуальную идею разработки ТРД – центробежный компрессор с = 4 и двухсторонним входом. Это позволило значительно повысить лобовую тягу двигателя.

От первого запуска экспериментального ТРД Ф. Уиттла W.U. (Whittle Unit), состоявшегося 12 апреля 1937 г., до первого полета однодвигательного реактивного самолета "Глостер" Е28/39 с ТРД W.1 15 мая 1941 г. прошло четыре года. За это время решалось много проблем. Но главной была проблема создания надежной камеры сгорания, которая претерпела ряд изменений — от кольцевой до трубчатой противоточной, а затем и до трубчатой прямоточной. После разрушения турбины на W.U.-3 в феврале 1941 г. был внедрен новый никелевый сплав фирмы "Монд Никель", названный Нимоник 80.

Рис. 10. Конструктивные схемы дальнейшего развития двигателя Юмо (Юмо-012Б)

Рис. 11. Конструктивная схема ТРД BMW-003

Рис. 12. Конструктивные схемы дальнейшего развития двигателя BMW


Объединенными усилиями трех фирм - "Пауэр Джетс", "Ровер" и "Роллс-Ройс" - был создан опытный двигатель W.2B, ставший прототипом двигателей "Велланд", а затем "Дервент" и "Нин" (уже с прямоточными трубчатыми камерами сгорания). 5 марта 1943 г. двухдвигательный истребитель Глостер ("Метеор-1") с двумя двига телями W.2B ("Велланд 1") тягой по 770 кгс совершил первый полет. А в июле 1944 г. он поступил в широкую эксплуатацию. Всего в Европе в период с 1943 по 1954 гг. было построено 3875 "Метеоров" различных модификаций.

Первым британским двигателем с осевым компрессором был "Метрополитен-Викерс F2" (рис. 13), созданный А. Гриффитом и Х. Константом и впервые испытанный на стенде в 1940 г. В ноябре 1943 г. два таких двигателя тягой по 975 кгс были установлены на "Метеор F2/40" и совершили первый полет.

"Роллс-Ройс" продолжила разработку ТРД с центробежным компрессором, включая "Дервент" (1943 г.), "Нин" (1944 г.) и "Дарт" (1947 г.), а в 1950-е гг. перешла на ТРД с осевыми компрессорами (типа "Эйвон") и ТРДД ("Конуэй", "Спей" и т.д.)

Сравнение основных данных первых опытных и серийных ТРД СССР, Англии и Германии дано в табл. 1.

Сравнительная хронология ряда важнейших событий при создании первых газотурбинных и турбореактивных двигателей в СССР, Англии и Германии дана в табл. 2.

Рис. 13. Конструктивная схема ТРД "Метрополитен-Викерс F2"


Таблица 1 Основные данные первых опытных и серийных ТРД

Таблица 2 Хронология создания первых турбореактивных двигателей


Таблица 3 Поколения авиационных ГТД


2. ГТД наземного и морского применения

Параллельно с развитием авиационных ГТД началось применение ГТД в промышленности и на транспорте. В 1939 г. швейцарская фирма A.G. Brown Bonety ввела в эксплуатацию первую электростанцию с газотурбинным приводом мощностью 4 МВт и КПД 17,4 %. Эта электростанция и в настоящее время находится в работоспособном состоянии. В 1941 г. вступил в строй первый железнодорожный газотурбовоз, оборудованный ГТД мощностью 1620 кВт (2200 л.с.) разработки этой же фирмы. С конца 1940-х гг. ГТД начинают применяться для привода морских судовых движителей, а с конца 1950-х гг. - в составе газоперекачивающих агрегатов (ГПА) на магистральных газопроводах для привода нагнетателей природного газа. Таким образом, постоянно расширяя область и масштабы своего применения, ГТД развиваются в направлении повышения единичной мощности, экономичности, надежности, автоматизации эксплуатации, улучшения экологических характеристик.

Быстрому внедрению ГТД в различные отрасли промышленности и транспорта способствовали неоспоримые преимущества этого класса тепловых двигателей перед другими энергетическими установками - паротурбинными, дизельными и др. К таким преимуществам относятся:

- большая мощность в одном агрегате;

- компактность, малая масса (рис. 14);

- уравновешенность движущихся элементов;

- широкий диапазон применяемых топлив;

- легкий и быстрый запуск, в том числе при низких температурах;

- хорошие тяговые характеристики;

- высокая приемистость и хорошая управляемость.

Основным недостатком первых моделей наземных и морских ГТД была относительно низкая экономичность. Однако эта проблема достаточно быстро преодолевалась в процессе постоянного совершенствования двигателей, чему способствовало опережающее развитие технологически близких авиационных ГТД и перенос передовых технологий в наземные двигатели.

2.1 Механический привод промышленного оборудования

Наиболее массовое применение ГТД механического привода находят в газовой промышленности. Они используются для привода нагнетателей природного газа в составе ГПА на компрессорных станциях магистральных газопроводов, а также для привода агрегатов закачки природного газа в подземные хранилища (рис. 15).

Рис. 15. Применение ГТД для прямого привода нагнетателя природного газа: 1 - ГТД; 2 - трансмиссия; 3 - нагнетатель.

К примеру, только в ОАО "Газпром" к настоящему времени эксплуатируются около 3100 ГТД суммарной установленной мощностью свыше 36000 МВт. ГТД используются также для привода насосов, технологических компрессоров, воздуходувок на предприятиях нефтяной, нефтеперерабатыватывающей, химической и металлургической промышленности. Мощностной диапазон ГТД от 0,5 до 50 МВт.

Основная потребность перечисленного приводимого оборудования – зависимость потребляемой мощности от частоты вращения (обычно близкая к кубической), температуры и давления нагнетаемых сред. Поэтому ГТД механического привода должны быть приспособлены к работе с переменными частотами вращения и мощностью. Этому требованию в наибольшей степени отвечает схема ГТД со свободной силовой турбиной. Различные схемы морских и наземных ГТД будут рассмотрены ниже.

2.2 Привод электрогенераторов

ГТД для привода электрогенераторов (рис. 16) используются в составе газотурбинных электростанций (ГТЭС) простого цикла и конденсационных электростанций комбинированного парогазового цикла (ПГУ), вырабатывающих "чистую" электроэнергию, а также в составе когенерационных установок (в российской литературе они часто называются "ГТУ-ТЭЦ"), производящих совместно электрическую и тепловую энергию.

Современные ГТЭС простого цикла, имеющие относительно умеренный электрический КПД ηэл= 25…40%, в основном используются в пиковом режиме эксплуатации – для покрытия суточных и сезонных колебаний спроса на электроэнергию. Эксплуатация ГТД в составе пиковых ГТЭС характеризуется высокой цикличностью (большим количеством циклов "пуск – нагружение – работа под нагрузкой – останов"). Возможность ускоренного пуска является важным преимуществом ГТД при работе в пиковом режиме. Электростанции с ПГУ используются в базовом режиме (постоянная работа с нагрузкой, близкой к номинальной, с минимальным количеством циклов "пуск – останов" для проведения регламентных и ремонтных работ). Современные ПГУ, базирующиеся на ГТД большой мощности (N > 150 МВт), достигают КПД выработки электроэнергии ηэл= 58…60%. В когенерационных установках тепло выхлопных газов ГТД используется в котле-утилизаторе для производства горячей воды и (или) пара для технологических нужд или в системах централизованного отопления. Совместное производство электрической и тепловой энергии значительно снижает её себестоимость. Коэффициент использования тепла топлива в когенерационных установках достигает 90%. Электростанции с ПГУ и когенерационные установки являются наиболее эффективными и динамично развивающимися современными энергетическими системами. В настоящее время мировое производство энергетических ГТД составляет около 12000 штук в год суммарной мощностью около 76000 МВт.

Основная особенность ГТД для привода электрогенераторов – постоянство частоты вращения выходного вала на всех режимах (от холостого хода до максимального), а также и высокие требования к точности поддержания частоты вращения, от которого зависит качество вырабатываемого тока. Этим требованиям в наибольшей степени соответствуют одновальные ГТД, поэтому они широко используются в энергетике.

Рис. 16. Применение ГТД для привода генератора (через редуктор): 1- ГТД, 2 – трансмиссия, 3 – редуктор, 4 – генератор.

ГТД большой мощности (N > 60 МВт), работающие, как правило, в базовом режиме в составе мощных электростанций, выполняются исключительно по одновальной схеме.

В энергетике используется весь мощностной ряд ГТД от нескольких десятков кВт до 350 МВт.

2.3 Применение в морских условиях

В морских условиях ГТД применяются в составе силовых агрегатов гражданских морских судов и боевых кораблей различного класса: от быстроходных ракетных и патрульных катеров водоизмещением около 500 т до авианосцев и кораблей сопровождения водоизмещением до 50000 т. Газотурбинный силовой агрегат обычно включает один или несколько ГТД и редуктор для понижения частоты вращения и передачи мощности на гребной винт. При этом ГТД могут быть различной мощности. В этом слу