Ссылка на архив

Общие принципы технологии криогенного охлаждения мяса индейки


Дефицит в общемировом производстве продуктов питания обусловлен прежде всего ростом населения ряда стран, многие из которых не в состоянии обеспечить себя необходимым рационом питания. Между тем, по данным Международного института холода, ежегодно теряется 20-30% всех производимых в мире продуктов питания, что составляет почти миллиард тонн. Из указанного количества не менее 50% - это скоропортящиеся продук-

ты, сохранение которых возможно только с помощью холода. Реально же холод применяют для сохранения примерно половины этого количества(14).

На современном этапе развития пищевой индустрии роль холода неук-

лонно возрастает, и в первую очередь в области консервирования сырья и продуктов питания, ассортимент которых непрерывно увеличивается.

Все большую популярность приобретает использование криогенных температур (низких температур). Наиболее развитой областью криогеники является область азотных температур. Ее развитие во многом связано с тех-

никой разделения воздуха, с помощью которой при криотемпературах мето-

дом низкотемпературной ректификации из воздуха извлекают азот и кисло-

род, а также такие газы, как аргон, неон, криптон и ксенон. Получение необ-

ходимой температуры в интервале от 120 до 65 К возможно как с помощью жидкого воздуха, так и основных его компонентов в жидком виде: азота, кис-

лорода и аргона. Однако при практическом использовании этих криопродук-

тов в жидком виде предпочтительным является жидкий азот.

В нашей стране и за рубежом в настоящее время эксплуатируется дово-

льно большое число различных типов воздухоразделительных установок, на которых производится получение из воздуха газообразного и жидкого азота.

Эти установки широко различаются по производительности, используемому криогенному циклу и чистоте получаемого азота. В большинстве – это мно-

горежимные установки, которые, наряду с получаемым из воздуха азотом, обеспечивают получение других продуктов разделения воздуха и прежде все-

го кислорода.

Увеличение объемов производства жидкого азота и газообразного в значительной степени обеспечивается тем, что в качестве исходного сырья используется атмосферный воздух и в соответствии с этим не требуется мате-

риальных затрат на источники сырья, запасы которого неисчерпаемы, а так-

же особенностью его теплофизических свойств, определяющих перспектив-

ность использования его в различных технологических процессах в качестве

хладагента.

В настоящее время техника хранения, транспортирования и обращения с жидким азотом хорошо освоена(19).

Общий химический состав мяса птицы


Мясо, главным образом, представлено мышечной тканью. Мышечная ткань характеризуется сложным химическим составом. В нее входит значи-

тельное количество лабильных веществ, содержание и свойства которых могут меняться в зависимости от многих факторов как при жизни птицы (предубойное содержание), так и сразу после убоя. Поэтому химический состав ткани изучают при строго определенных условиях, к которым относи-

тся быстрое извлечение ткани после убоя птицы, охлаждение, быстрое изме-

льчение при охлаждении, обработка при низких температурах и т. д.

При исследовании химического состава мышечную ткань освобождают по возможности от других тканей (соединительной, жировой и др.) и измель-

чают (гомогенизируют). После этого выделяют и разделяют химические ком-

поненты, входящие в состав ткани. Такое разделение чаще всего основывает-

ся на избирательной растворимости отдельных химических веществ мышеч-

ной ткани в различных растворителях: в воде, вводно-солевых растворах при

различном значении рН, органических растворителях и т. д. Для извлечения липидов измельченную ткань перед экстракцией предварительно высушивают(13).

Содержание основных групп химических веществ в мышечной ткани индейки первой категории характеризуется следующими данными (в г.).

Вода………………………………….57,3

Белки…………………………………19,5

Жиры…………………………………22,0

Углеводы…………………………….. –

Зола……………………………………0,9

Минеральные вещества:

Na…………………………………….0,09

К……………………………………...0,21

Са…………………………………...0,012

Мg………………………………..0,019

Р………………………………….0,2

Fe…………………………………0,0014

Витамины:

А……………………………… 0,00001

В1………………………………0,00005

В2………………………………0,00022

РР………………………………0,0078

Энергетич. ценность……………276

Теплофизические свойства птицы


При изучении теплофизических характеристик необходимо учитывать строение материала, взаимодействие его с внешней средой, влияние адсорби-

рующих добавок, резко изменяющих структурно-механические свойства обрабатываемых тел, также молекулярные и химические взаимодействия влаги с материалом и условия перемещения ее в материале(2).

С повышением влажности мяса птицы удельная теплоемкость увеличивается.

Таблица 1

Плотность мяса птицы

Мясоr (в кг/м^3) в среде
гелияазотавоздуха
Индейка приготовленная (белое мясо)126812701265

Плотность тела – называется предел отношения массы элемента тела к его объему.

Коэффициент теплопроводности численно равен количеству тепла, переносимому через единицу поверхности в единицу времени при градиенте температур, равном единице. Теплопроводность зависит от химического состава продукта и при увеличении содержания воды увеличивается.

Из-за низкой теплопроводности кожи коэффициент теплопроводности одних мускул заметно больше, чем мускул с кожей (табл. 2).

Таблица 2

Коэффициент теплопроводности мяса кур

Объект исследованияТолщина, ммW, %r, кг/м^3l, Вт/(м*К)
цыпленоккурицацыпленоккурица
Грудные мышцы5,185,4169,710700,380,44
Кожа1,701,243810300,030,02
Мускулы с кожей---1030-10700,370,39

Эти опыты проводились с 8-недельными цыплятами и 18-месячными курами. Температура объектов исследования менялась от 277,4 до 299,6 К при направлении теплового потока перпендикулярно волокнам мышц.

Установлено влияние температуры (Т = 273-293 К) на коэффициент теплопроводности ( в Вт/(м*К)) мяса птицы.

Для темного мяса

l = 0,245 + 0,000865Т;

для светлого мяса

l = 0,311 + 0,000605Т.

Из выше написанного следует, что теплопроводность светлого мяса больше, чем темного. Это обусловлено тем, что в мясе светлой мускулатуры содер-

жится больше влаги, чем в темной (16).

Коэффициент теплопроводности мяса птицы, по данным разных авто-

ров, различается незначительно (табл. 3).

Таблица 3

Коэффициент теплопроводности мяса птицы

МясоW, %Т, КНаправление теплового потока относительно волокон мясаl, Вт/(м*К)

Индейки

мускулы

груди

ноги

74

74

274

277

275

275

Перпендикулярно

Параллельно

Перпендикулярно

0,52

0,50

0,52

0,50

Таблица 4

Теплофизические характеристики мяса птицы

МясоТ, КW, %r, кг/м^3с, Дж/(кг*К)l, Вт/(м*К)а*10^8, м^2/с
Куриное--103033070,4112,0
Индейки273-29374107035170,51913,8

Удельная теплоемкость С – количество теплоты, поглощенной или выделяемой 1 кг продукта при повышении или понижении температуры на 1 С. Для однородного тела с = С/m. Измеряется в кДж/(кг*К)

Азотистые вещества и

аминокислотный состав белков


Из азотистых небелковых веществ мышечной ткани выделяют: Карно-

зин, ансерин, карнитин, креатин, креатинфосфат, аденозинтрифосфорная кислота, которые при жизни птицы выполняют специфические функции в процессе обмена веществ и энергии. Другая часть азотистых веществ – пури-

новые основания, свободные аминокислоты и др. – представляет собой про-

межуточные продукты обмена белков. Наконец часть азотистых веществ, например мочевина, мочевая кислота и аммонийные соли, является конечны-

ми продуктами обмена белков. В общем в свежих мышцах содержится 0,3%

небелкового азота в расчете на сырую ткань, или 1,2% в расчете на сухой остаток(13).

Содержание отдельных азотистых веществ в свежих мышцах характе-

ризуется следующими данными ( в % на сырую ткань).

Карнозин……………….0,2-0,3 Аденозинтрифосфор-

Ансерин………………..0,09-0,15 ная ислота………………….0,25-0,4

Карнитин……………….0,02-0,05 Инозиновая кислота…………0,01

Холин…………………..0,08 Пуриновые основания……….0,07-0,23

Креатин + креа- Свободные аминокислоты…....0,1-0,7

тинфосфат…………… .0,2-0,55 Мочевина…………………….0,002-0,2

После убоя птицы азотистые вещества и продукты их превращения участвует в создании специфического вкуса и аромата мяса.

Карнозин ( b-аланилгистидин). Специфический дипептид

Карнозин стимулирующе действует на секрецию пищеварительных же-

лез. При жизни птицы карнозин участвует в процессах окислительного фос-

форилирования, что способствует образованию в мышце макроэргических фосфатных соединений (АТФ и КрФ).

Ансерин (метилкарнозин). Гомолог карнозина

Ансерин впервые выделен из мышечной ткани гусей. Ансерину припи-

сывают те же функции, что и карнозину.

Карнитин. Производное g-амино-b-оксимасляной кислоты

Роль карнитина в превращениях мышечной ткани еще не достаточна ясна. Считают, что он является одним из источников метильных групп.

Холин. Аминоэтиловый спирт с тремя метильными группами у атома азота

Холин необходим для образования фосфолипидов и ацетилхолина – соединения, играющего важную роль в процессе передачи нервного возбуж-

дения при сокращении мышц.

Свободный холин вызывает перистальтику кишечника. Как веществу, поступающему с продуктами питания, ему приписывается значение витами-

на.

Глютатион (глютаминилцистеилглицин). Специфический трипептид

Глютатион является сильным восстановителем и, подобно цистеину, легко подвергается окислению. В живых тканях глютатион в основном находится в восстановленной форме и по мере необходимости переходит в окисленную форму

Глютатиону, очевидно, принадлежит особая роль в поддержании окис-

лительно-восстановительного потенциала мышечной клетки и активации ферментов, содержащих в активном центре SH-группы.

Креатин. По строению является метилгуанидинуксусной кислотой

Аминокислотный состав белков индейки первой категории представлен в таблице 5.

Таблица 5

Аминокислоты, мг в 100 г продукта (20)

ПоказательКоличествоПоказательКоличество

Белок, %

Незаменимые аминокислоты

В том числе:

Валин

Изолейцин

Лейцин

Лизин

Метионин

Треонин

Тирозин

Триптофан

Фенилаланин

Цистеин

Заменимые аминокислоты

19,5

7620

930

963

1587

1636

497

875

616

329

803

121

11834

В том числе:

Аланин

Аргинин

Аспарагиновая кислота

Гистидин

Глицин

Глут. к-та

Оксипролин

Пролин

Серин

Общее количество

Лимитирующая

аминокислота,

Скор, %

1218

1168

2007

540

1137

3280

181

831

735

19454

нет

Жирнокислотный состав липидов


При оценке пищевой ценности продукта большое значение придается содержанию липидов и особенно незаменимых жирных кислот, которые не могут синтезироваться в организме человека (линолевая, линоленовая, арахи-

доновая).

Биологическая ценность жиров характеризуется коэффициентом эффективной метаболизации (КЭМ), представляющим собой отношение концентрации содержания арахидоновой кислоты (С20:4) к сумме всех других полиненасыщенных кислот с 20 и 22 углеродными атомами, следующим об-

разом:

КЭМ = С20:4/(С20:2 + С20:3 + С20:5 + С22:5 + С22:6)

Липиды мяса птицы представлены в таблице 6.

Таблица 6

Липиды, г в 100 г продукта(20).

Сумма липидов

триглицериды

фосфолипиды

холистерин

Жирные кислоты (сумма)

Насыщенные

В том числе:

С12:0 лауриновая

С14:0 миристиновая

С15:0 пентадекановая

С16:0 пальмитиновая

С17:0 маргариновая

С18:0 стеариновая

22,00

16,06

4,40

0,21

18,35

5,82

0,02

0,23

0,03

4,1

0,07

1,35

С20:0 арахиновая

Мононенасыщенные

В том числе:

С14:1 миристолеиновая

С16:1 пальмитолеиновая

С17:1 гептадеценовая

С18:1 олеиновая

С20:0 гадолеиновая

Полиненасыщенные

В том числе:

С18:2 линолевая

С18:3 линоленовая

С20:4 арахидоновая

0,02

8,46

0

1,78

0,05

6,42

0,21

4,07

3,88

0,15

0,04

Так как многие полиненасыщенные кислоты, необходимые для расчета коэффициента отсутствуют, то подсчитаем его для полосатого тунца:

С20:2 = 6,520 С20:5 = 5,160

С20:3 = 1,360 С22:5 = 5,940

С20:4 = 0,420 С22:6 = 15,54

КЭМ = 0,420/34,560 = 0,012 (16)

Липиды, входящие в состав мышечных волокон, выполняют функции двоякого рода. Часть их, главным образом фосфолипиды, является пласти-

ческим материалом и входит в структурные элементы мышечного волокна – миофибриллы, клеточные мембраны, прослойки гранул.

В состав миофибрилл входят различные глицерофосфолипиды, многие из них способствуют проявлению активности ряда ферментов. Особенно большим содержанием фосфолипидов отличается саркоплазматический рети-

кулум и сарколеммные мембраны. Однако общее содержание фосфолипидов в сарколеммной мембране значительно ниже, чем в митохондриях, причем качественный состав их в ней не отличается от состава субклеточных структур.

Другая часть липидов выполняет роль резервного энергетического материала, такие липиды содержатся в саркоплазме в виде мелких капелек на полюсах митохондрий. В большом количестве липиды содержатся в межклеточных пространствах, между пучками мышц в соединительных прослойках (13).

Состав углеводов


Одним из основных углеводов мышечной ткани является гликоген – важнейший энергетический материал. он расходуется при мышечной работе и накапливается при отдыхе. Содержание его зависит от тренированности и упитанности птицы, а также физиологического состояния.

Мышечный гликоген представляет собой сильно разветвленный поли-

сахарид, построенный из сотен молекул a-глюкозы. молекулярная масса его равна 1*10^6. Большая степень разветвленности мышечного гликогена необ-

ходима, поскольку действию ферментов подвергаются концы молекулы; чем больше свободных концов, тем быстрее может быть использована молекула гликогена или быстрее может быть заново синтезирована во время таких периодов клеточного метаболизма, когда происходит его регенерация. В пе-

риод распада молекул гликогена наряду с последовательным разрушением его боковых цепей под действием эндоамилаз происходит и образование его частей – «затравок», которые также могут затем расти за счет присоединения глюкозы. Мышечная ткань отличается высокой концентрацией ферментов и факторов системы, синтезирующей гликоген.

В мышечных волокнах обнаруживается определенная связь гликогена с миофибриллами. Наблюдается локализация гликогена у анизотропных дис-

ков и он не обнаруживается в изотропных. Кроме того, гликоген более или менее равномерно распределен в саркоплазме ( с преобладанием в около-

ядерной саркоплазме). Возможно, что связь гликогена с миозином анизотропных дисков миофибрилл и миогеном саркоплазмы обеспечивает необходимый темп расщепления полисахарида при его гликолитическом рас-

паде. В этих превращениях более лабильной является фракция легкораство-

римого гликогена. Наряду с этим труднорастворимый гликоген метаболичес-

ки не инертен и является резервом, находящимся в состоянии непрерывного обновления.

В процессе интенсивной мышечной работы гликоген подвергается ана-

эробному гликолитическому распаду с образованием молочной кислоты. В процессе превращения гликогена образуются фосфорные эфиры гексоз и триоз, пировиногралная кислота и другие продукты распада, однако количес-

тво их относительно невелико.

Гликоген распадается в мышцах не только фосфорилитическим, но и гидролитическим (амилолитическим) путем под дествием a-амилазы, нейтра-

льной g-амилазы, олиго-1,4 – 1,4-глюкантрансферазы и амило-1,6-глюкозида-

зы. В качестве конечных продуктов такого распада гликогена образуются глюкоза, линейные и разветвленные олигоглюкозиды. Дальнейшее расщеп-

ление олигоглюкозидов осуществляется специфичными a-олигоглюкозида-

зами (13).

Витамины


Витамины представлены в таблице 7(20).

Таблица 7

Витамины в 100 г. продукта (тушки индейки первой категории)

Витамин А, мг……………………0,01

b-каротин, мг………………………сл.

Витамин Е, мг……………………0,34

Витамин В6, мг…………………..0,33

Витамин В12, мкг…………………-

Биотин, мкг………………………..-

Витамин С, мг……………………..-

Ниацин, мг………………………...7,8

Пантотеновая

кислота, мг……………………….0,65

Рибофлавин, мг…………………..0,22

Тиамин, мг………………………..0,05

Фолацин, мкг……………………..9,6

Холин, мг…………………………139

Свойства воды, входящей в состав сырья


Содержание воды в мышцах колеблется в зависимости от возраста птицы: чем она моложе, тем больше влаги в мышцах. Неодинаково содержание воды в различных группах мышц и уменьшается по мере увеличения содержания жира. Вода, входящая в состав мышечной ткани, не-

однородна по физико-химическим свойствам и роль ее неодинакова.

Различают две формы воды – свободную и связанную. Свободная жидкая вода имеет квазикристаллическую, тетраэдрическую координирован-

ную структуру. Она ограничена степенями свободы за счет образования водородных связей между отдельными молекулами. Этим объясняется высо-

кая диэлектрическая постоянная воды. С помощью тяжелой воды и примене-

ния метода ядерно-парамагнитного резонанса установлено, что свободная во-

да мышечной ткани также имеет явно выраженную подобную координиро-

ванную, тетраэдрическую структуру. Другая часть воды находится в связан-

ном состоянии – ионная и гидратная вода, активно удерживаемая главным образом белковыми веществами и некоторыми другими химическими компонентами клеток (например, углеводами, липидами). Такое состояние объясняется наличием химической или физико-химической связи между водой и веществом. Около 70% воды ткани ассоциируется с белками мио-

фибрилл.

Гидратация белковых молекул обусловлена полярными свойствами мо-

лекул воды (дипольным строением) и наличием функциональных групп (аминных, карбоксильных, гидроксильных, пептидных и др.) в молекуле бел-

ков. При этом диполи воды образуют гидратные слои вокруг активных групп

и белковой молекулы в целом. При гидратации часть воды, связываясь с гидрофильными группами белка, располагается вокруг белковых молекул в виде мономолекулярных слоев. Первые слои удерживаются довольно прочно, а последующие – значительно слабее, располагаясь в виде рыхлого диффузного облака. Окружая функциональные группы соседних белковых цепей, связанная вода существенно влияет на стабилизацию их простран-

ственной конфигурации, и, следовательно, определяет их функциональную деятельность.

На некоторых участках молекул белков могут образоваться водные мостики.

Связанная вода удерживается белком довольно прочно. Она характери-

зуется рядом специфических свойств: более низкая точка замерзания, мень-

ший объем, отсутствие способности растворять вещества, инертные в химическом отношении ( находящиеся в небольших концентрациях) – сахара, глицерин, некоторые соли. Связанная вода составляет 6-15% от масс-

сы ткани.

За слоем гидратной воды расположены слои относительно слабо удер-

живаемых молекул воды, представляющей собой раствор различных веществ, - это свободная вода. В ткани ее содержится от 50 до 70%. Удерживается она большей частью за счет осмотического давления и адсорб-

ции структурами клеток – сеткой белковых мембран и белковых волокон, а также в результате заполнения макро- и микрокапиллярных внутриклеточ-

ных и межклеточных пространств ткани. Поэтому такую воду рассматривают как иммобилизованную воду, которая в значительном количестве сравните-

льно легко может быть удалена из ткани (13).


Характеристика ферментов сырья


Мышечная ткань осуществляет свои функции благодаря активному участию ферментных систем, специфически локализованных в структурах ткани. Ферментные системы обеспечивают получение большого количества энергии, необходимой для осуществления мышечной деятельности. Мышечные клетки характеризуются большой концентрацией ферментов гли-

колиза, а также ферментов числа трикарбоновых кислот и дыхательной цепи.

Считается, что осуществление гликолиза и связанное с ним выделение энергии не нуждается в высокой дифференциации структурно-ферментного аппарата, а поэтому протекает в матриксе саркоплазмы. Вместе с тем разли-

чные воздействия на мышечную ткань повышают интенсивность гликолити-

ческих процессов, что может свидетельствовать о выходе ферментов из ограничивающих структур и их активации.

В матриксе саркоплазмы содержатся многие ферменты синтеза белков, липидов и полисахаридов.

Аэробное окисление продуктов обмена происходит в митохондриях (саркосомах). Большинство ферментов, участвующих в процессах окисления, обнаруживается именно в этих органеллах. Во всех мышечных клетках мито-

хондрии занимают значительную часть саркоплазмы, и в каждой из них го-

раздо больше крист ( складчатые внутренние мембраны митохондрий), чем в менее многочисленных митохондриях других клеток. процессы, протекаю-

щие в складчатых внутренних мембранах митохондрий при участии локализованных в них ферментных систем, играют основную роль в снабже-

нии мышечной клетки энергией.

Разные мышцы в зависимости от функциональных особенностей харак-

теризуются различным соотношением концентрации ферментных систем, ка-

тализирующих анаэробные и аэробные превращения. Так, в красных мышеч-

ных волокнах содержится больше митохондрий, чем в белых; активность дыхательных ферментов в них в 6 раз больше, чем в белых. В белых мышцах интенсивность анаэробного гликогенолиза примерно в 2 раза выше, чем в красных.

Интенсивность окисления жиров в мышцах относительно невелика, но после углеводов они являются важнейшим источником энергии. При недос-

татке углеводов в процессы обмена вовлекается большее количество жиров.

К циклу трикарбоновых кислот непосредственно примыкают реакции окис-

ления жирных кислот. В митохондриях обнаружены ферменты, окисляющие жирные кислоты.

Такие процессы обмена аминокислот, как дезаминирование и переами-

нирование, также примыкают к циклу трикарбоновых кислот. Многие ферменты дезаминирования аминокислот обнаружены в митохондриях. Син-

тез многих аминокислот, как и «непрямое» их дезаминирование, осуществля-

ется реакциями переаминирования. Переаминирование аминокислот связано

с активностью аминофераз, содержащихся в митохондриях.

Вместе с тем ферменты переаминирования обнаружены также в жидкой части саркоплазмы.

Таким образом, в митохондриях мышц содержатся сложные фермен-

тные системы, составляющие единый комплекс, к которому примыкают фер-

менты других компонентов клетки. Изменение физико-химического состоя-

ния этих органелл сказывается на активности их ферментов. Деструкция ми-

тохондрий нарушает координированное осуществление сложного комплекса взаимосвязанных процессов обмена, происходящих в них.

Саркоплазматический ретикулум содержит, кроме активируемой иона-

ми магния АТФ-азы, также обладающую очень высокой активностью АМФ-аминогидролазу.

В ядрах содержатся гликолитические, окислительные, гидролитические ферменты, а также ферменты белкового синтеза. Кроме того, в ядрах имеют-

ся ферменты синтеза нуклеиновых кислот (ДНК-полимераза и РНК-полиме-

раза).

С миофибриллами связана основная АТФ-азная активность, которой, как известно, обладает миозин и она зависит от присутствия катионов Na , K ,

Li , Ca , Mg , NH . Очищенный миозин активируется ионами кальция и ингибируется ионами магния. Наряду с этим имеется также растворимая АТФ-аза, отличная от миозина, содержащаяся в различных структурах клет-

ки: в ядрах, митохондриях и мембранных элементах саркоплазмы. Это АТФ-аза активируется ионами магния.

АТФ-азной активностью обладает определенная часть молекулы мио-

зина – его компонент – Н-миозин. Многократно переосажденный миозин наряду с АТФ-азной активностью АМФ-аминогидролазы, ацетилхолинэсте-

разы. Активность этих ферментов сосредоточена в L-миозине. Кроме того, миофибриллы характеризуются глютаминазной активностью. В проявлении активности ферментов в миофибриллах играют роль фосфолипиды. При де-

липировании миофибрилл в них резко снижается активность АТФ-азы, АМФ-аминогидролазы и ацетилхолинэстеразы.

В сарколеммной мембране обнаружено наличие АМФ-аминогидролазы и весьма активной ацетилхолинэстеразы.

К рибосомным относят ферменты, принимающие участие на тех стади-

ях синтеза белка, которые происходят на рибосомах. Эти ферменты участву-

ют в прикреплении, передвижении и отделении от рибосомной поверхности И-РНК и Т-РНК; перенос недостроенных полипептидов от одной молекулы Т-РНК и сопутствующее образованию пептидной связи. К рибосомным ферментам относят также рибонуклеазу 1, ГТФ-азу и др.

Лизосомы содержат клеточные гидролазы: кислую рибонуклеазу, дезоксирибонуклеазу, кислую фосфатазу, катепсины, эстеразы, гликозидазы. В живой клетке эти ферменты могут действовать в основном на фагоцити-

рованный материал, попавший внутрь лизосомы. Мышечной клетке это необходимо для обновления ее важнейших структур и компонентов. Если целостность лизосомы нарушена, то гидролазы высвобождаются и перевари-

вают компоненты клетки.

Наличие в лизосомах липопротеидной мембраны надежно удерживает гидролитические ферменты и предотвращает переваривание субстратов мы-

шеечного волокна тотчас после убоя. Однако в дальнейшем, под воздействи-

ем различных факторов, происходит высвобождение гидролаз

Структурно-механические свойства сырья


Структурно-механические характеристики представляют собой фундаментальные физические свойства продуктов. Они проявляются при механическом воздействии на обрабатываемый продукт и характеризуют его сопротивляемость приложенным извне усилиям, обусловленную строением и структурой продукта. Эти характеристики используются для расчета процес-

сов в рабочих органах машин с целью определения их механических пара-

метров (геометрических, кинематических и динамических); они отражают существенные аспекты качества продуктов. Кроме того, структурно-механи-

ческие характеристики учитываются при расчете различных физических процессов (22).

Сдвиговые характеристики.

В я з к о с т ь к р о в и. Кровь состоит из плазмы и форменных элемен-

тов. Плазма составляет 60% объема крови и представляет собою сложный раствор, содержащий белки, глюкозу, холестерин и его эфиры, фосфатиды, жиры и свободные жирные кислоты, небелковые азотистые и минеральные вещества. Форменные элементы крови (40%) представлены красными кровя-

ными шариками (эритроциты), белыми (лейкоциты) и кровяными пластинка-

ми (тромбоциты). Общее представление о составе крови дано на рис. (1).

Сухие вещества плазмы крови (7).

БМЛСАз
ФГА

Рис. (1). Б – Белки, 7,5%; Ф – Фибриноген, 0,2%; Г – Глобулины, 2,8-3,0%; А – Альбумины, 4,3%; М – Минеральное вещество, 1%; Л – Липиды, 1%; С – Сахар, Аз – Азотистые вещества.

При увеличении концентрации сухих веществ вязкость крови возрастает и уменьшается при увеличении температуры, что наглядно видно из табл. 8-10. В таблицах приведены данные исследований пищевой стабилизированной крови и плазмы, полученной из этой же крови промышленным сепарирова-

нием. Концентрирование осуществляется ультрафильтрацией на лаборатор-

ной установке. Вязкость измеряли с помощью вискозиметра Гепплера и рео-

вискозиветра Ротовиско.

Таблица 8

Зависимость вязкости крови h*10^3 (в Па*с) от концентрации сухих веществ и температуры

Концентрация сухих веществ, кг на 1 кг кровиТемпература, С
10203040
0,26192594636
0,21331191410
0,182151075
0,15211764

Данные таблицы 8 получены при градиенте скорости 380 с ^(-1), а

табл. 9 – при температуре 20 С. Следует отметить, что при концентрации 0,261 кровь представляет собой типичную степенную жидкость.

Таблица 9

Зависимость вязкости крови h*10^3 (в Па*с) от концентрации сухих веществ и градиента скорости

Концентрация сухих веществ, кг на 1 кг кровиГрадиент скорости, с
40100200380570
0,26110985715953
0,2134127211918
0,1821010101010
0,15277777

Таблица 10

Зависимость вязкости плазмы крови h*10^3 ( в Па*с) от концентрации и температуры

Концентрация сухих веществ, кг на 1 кг кровиТемпература, С
10203040
0,192018,312,08,36,7
0,163511,57,75,54,5
0,11905,63,92,92,4
0,08353,12,31,81,5

При меньшей концентрации изменения эффективной вязкости от гра-

диента скости не описываются степенным законом, а плазма крови представ-

ляет собой ньютоновскую жидкость (см. табл. 10). При повышении концен-

трации сухих веществ вязкость крови возрастает менее интенсивно по сравнению с вязкостью бульона.

Компрессионные характеристики.

К о м п р е с с и н н ы е х а р а к т е р и с т и к и ц е л ы х т к а н е й

м я с а п р и о б ъ е м н о м с ж а т и и. Характеристики изучали с помощью цилиндров с поршнями при одностороннем нагружении. Объем цилиндра 0,0009 м^3, пределы изменения гидростатического давления – от 1*10^5 до 13*10^5 па. При этом были определены следующие реологические характе-

ристики: мгновенный модуль упругости давления 11,6*10^5 r^0,4; макси-

мальная деформация при длительности действия давления 180 с – 1,34*

*10^(-5) r^0,78; кинетика изменения относительных деформаций после разгрузки – 7,5*10^(-7) r^0,61 (1 - exp(-8,9t)) + 134 r^0,78 (где t - длитель-

ность восстановления объема, с; пределы изменения t - от 0 до 10с).

Прочностные характеристики.

П р о ч н о с т н ы е х а р а к т е р и с т и к и ц е л ы х т к а н е й

м я с а . При растяжении предел прочности различных мышц мяса определил Николаев. Длина образцов составляла от 0,01 до 0,02 м при поперечном сечении 0,005*0,002 м или 0,0075*0,002 м; скорость растяжения составляла 3*10^(-5) или 6*10^(-5) м/с. По-видимому если считать мясо нелинейным реологическим телом, то прочностные характеристики будут зависеть от геометрических размеров образца и кинематики нагружения.

Авторы установили корреляционную связь между прочностными ха-

рактеристиками и органолептической оценкой нежности. Их данные показы-

вают, что для сырого мяса напряжение разрыва зависит от вида мышцы (длиннейшая мышца спины, полусухожильная, трапецевидная мышцы); для вареного мяса такой дифференциации не наблюдается. С улучшением неж-

ности (более высокая органолептическая оценка в баллах) напряжение разрыва и модуля упругости уменьшаются, причем для сырого мяса эта зависимость более пологая, для вареного – более крутая.

П р о ч н о с т н ы е х а р а к т е р и с т и к и ц е л ы х т к а н е й м я с а п р и с р е з е. Прочность мяса при срезе через матрицу исследовали с помощью пуансонов с углами заточки 90, 80 и 30. В процессе взаимодей-

ствия пуансона с материалом производили одновременную регистрацию усилий и деформаций на автоматических самопишущих приборах КСП-4. Образцы мяса толщиной 0,015 м при температуре от +10 до -1,5 С исследовали на прочность при резании поперек волокон при постоянной скорости перемещения пуансона 4,6*10^(-3) м/с.

Разрушение структуры пуансоном происходит в две стадии. При де-

формации мяса до 90+5% мышечные волокна разрезаются непосредственно режущей кромкой пуансона. Соединительная ткань, как более прочная, уплотняется и срезается при увеличении деформации до 98+0,3%, т.е. когда пуансон начинает входить в отверстие, выполняющее роль матрицы.

Значения величин усилий разрезания мышечных волокон, приведенных к единице длины режущей кромки пуансона, соответственно равны для пуансона с углом заточки 90 - 3,85*10^3 Н/м, 80 - 3,52*10^3 Н/м и 30 – 2,68*

10^3 Н/м.Величины предельных усилий при полном срезе образца изменяют-

ся в зависимости от угла заточки пуансонов от 5,4*10^3 до 6,2*10^3 Н/м, при этом деформация образцов приближается к 98%.

Влияние масштабного фактора рассматривали при срезе образцов, высоту которых изменяли от 0,005 до 0,015 м. При увеличении высоты образцов уменьшается величина напряжения среза, вычисленная по началь-

ной высоте образцов. При изменении высоты образцов от 0,005 до 0,015 м предельное усилие среза увеличивается от 2,7*10^3 до 6,2*10^3 Н/м и соответственно линейно уменьшается напряжение – от 5,4*10^5 до 4,1*10^5 Па.

При резании мяса лезвием наименьшие энергозатраты соответствуют углу встречи ножа и продукту около 60. При скорости подачи мяса от 0,05 до 0,09 м/с, при угле заточки ножа 18 и 25 и угле встречи 50-60 удельные усилия резания различаются незначительно и составляют 6000-7000 н/м.

Плотность.

П л о т н о с т ь к о с т и . Плотность приведена в таблице 11 и 12. Данные довольно близки по значению. Некоторое различие объясняется, по-видимому, тем, что авторы по-разному именовали кости. Имеются данные о плотности реберной кости,