Методи перетворення комплексного креслення
МЕТОДИ ПЕРЕТВОРЕННЯ КОМПЛЕКСНОГО
КРЕСЛЕННЯ.
ЗМІСТ
Вступ.. 2
1.Заміна площин проекцій.. 3
2. Плоскопаралельне переміщення.. 5
3.Обертання навколо ліній рівня.. 7
4. Косокутне допоміжне проектування.. 10
Висновки.. 11
Список літератури.. 12
Розділ геометрії, в якому просторові фігури ( оригінали вивчають за допомогою зображень їхніх графічних моделей на площині малюнка називають нарисною геометрією.
Малюнок повинен нести геометричну інформацію про форму та розміри оригіналу, бути наочним, простим і точним. Формоутворюючими елементами простору є основні геометричні фігури – точка, пряма та площина, з яких утворюються складніші фігури. Геометричною фігурою називають будь – яку непусту множину точок, а геометричний простір може складатися з множини точок, прямих чи площин. Основою нарисної геометрії є метод проекцій, який дає можливість одержувати відображення просторових фігур на площині чи поверхні. За цим методом кожній точці тривимірного простору відповідає певна точка двовимірного простору ( площини ). На площині зображують усі фігури, розміщені в просторі. Перетин проектуючого променя з площиною проекцій дає проекцію точки. Проекцією прямої в загальному випадку є пряма, що проходить через точку її перетину з площиною проекцій. Малюнок, що складається з кількох (мінімум двох) зв'язаних між собою проекцій зображуваної фігури називають комплексним малюнком.
Висновки
Для розв'язання більшості метричних та деяких позиційних задач геометричні фігури загального положення треба привести в окреме положення. Це перш за все стосується прямих ліній, площин, гранних і криволінійних поверхонь. Після перетворення комплексного рисунка додаткові проекції дають можливість розв'язувати задачі простіше.
Методи перетворення проекцій спираються на два основних принципи:
1) зміна взаємного положення об'єкта проектування та площин проекцій
2) зміна напряму проектування.
Перетворення комплексного креслення необхідне для визначення натуральних величин відрізків, відстаней між відрізками, а також відстаней між крапками і площинами. Застосовуючи спосіб зміни площин проекції можна визначити величину кутів між прямими. Поворотом навколо прямій можна ввести крапку в площину, знайти положення крапки, лежачої усередині геометричного тіла.
Засіб косокутного допоміжного проектування використовують для розв'язання позиційних задач.
Список літератури
1. Михайленко В. Є. та ін- Нарисна геометрія - К. Вища школа, 1992. ( гл. 6 )
2. Русскевич Н. Л. Начертательная геометрия –М. Наука, 1976 ( гл.І У)
3. Четверухин Н. Ф. Начертательная геометрия – М. Наука, 1972 ( гл. У)