Ссылка на архив

Элементы квантовой механики

В настоящее время развитие вычислительной техники проходит, в основном, в двух направлениях:

1. развитие и усовершенствование схематических решений средств ВТ

2. усовершенствование архитектурных решений ВТ

Одним из основных показателей качества средств ВТ является производительность (быстродействие) вычислительной системы. Необходимо отметить, что основной резерв повышения производительности в настоящее время следует искать в развитии второго направления, однако, это нисколько не означает, что первое направление, как утверждают некоторые авторы, себя исчерпало.

Развитие компьютерной электроники неразрывно связано (определяется) с достижениями в области микроэлектроники. Основными элементами ЭВМ являются разнообразные интегральные схемы (ИС), представляющие собой набор электрически связанных между собой активных (полупроводниковые структуры) и пассивных (резисторы, конденсаторы) компонентов, которые выполняют определённые функции.

Основным компонентом ИС являются полупроводниковые приборы, параметры которых в основном определяют параметры ИС и, следовательно, при одинаковых архитектурных решениях ЭВМ и её параметры (в том числе и производительность).

Физические процессы, протекающие в полупроводниковых приборах невозможно объяснить не прибегая к основным положениям квантовой механики и физики твёрдого тела. Из курса физики известна двойственная природа света (волновая и корпускулярная).

В 1924г. физик де-Бройль высказал гипотезу, которая затем была подтверждена экспериментально, согласно которой такими же свойствами должны обладать и микрочастицы (электроны, протоны, атомы и т.д.). Соотношение де-Бройля:

hn=E

l=h/mJ, где

-34

h – постоянная Планка; = 0,6*10 Дж ×с

E – энергия частицы

n - частота излучения

m – масса частицы

J - скорость частицы

Так как микрочастицы (в частности электроны) обладают свойствами корпускулы и волны, то описывать их движение методом классической механики невозможно. Уравнение, описывающее их движение, было найдено Шредингером и носит его имя:

2 2 2 2 2 2 2

dy/ dt =ђ/2m( dy/dx + dy/dy +dy/dz ) – U(x,y,z,y) где

ђ = h/2

y(x,y,z,t) – так называемая волновая функция – решение уравнения

U – потенциальная энергия частицы

В общем случае решение уравнения Шредингера встречает затруднения. Для практических задач уравнение часто существенно упрощается (например, y не является функцией времени; для других задач достаточно рассматривать движение только по одной координате и т.д.).

Решая приведённое уравнение с различными ограничениями (частные случаи), можно получить фундаментальные положения, объясняющие многие процессы в твёрдом теле (физика твёрдого тела). Например, таким образом, удалось объяснить явление туннельного эффекта – преодоление частицей, имеющей энергию E потенциального барьера высотой U и конечной толщины d, даже тогда, когда U>E. Причём, легко доказывается, что при этом микрочастица, просочившаяся (туннелируемая) через барьер, сохраняет свою прежнюю энергию Е.

Как мы увидим позже, явление туннельного эффекта довольно широко используется в схемотехнике ЭВМ.

ПОЛУПРОВОДНИКИ.

В природе все вещества обладают способностью в той или иной степени проводить электрический ток. Это свойство характеризуется значением идеальной проводимости s.

-10 -9 -4 -3

0 10 10 10 10


Идеальный Диэлект- Полупроводники Полупроводники = ¥

диэлектрик рик Идеальный

проводник

Такое деление весьма условное, особенно между ПП и диэлектриками (принципиальных различий нет). Что касается различий между металлами и полупроводниками, то различия здесь более принципиальные.

В настоящее время, наиболее широкое применение в интегральной технологии получил ПП – кремний. Поэтому, в дальнейшем, все примеры, кроме особо оговоренных, основаны на свойствах кремния.

Подавляющее большинство полупроводников (за исключением т.н. аморфных ПП) имеют ярко выраженную кристаллическую структуру и представляют собой в основном монокристаллы. Так простейшая кристаллическая решётка Si – куб. В вершинах куба (для тетраэдра и в центрах граней) находятся атомы Si. Известно, что Si – 4-х валентный т.е. 4 электрона внешней оболочки отсутствуют. Такой уровень является энергетически неустойчивым и атом Si пытается захватить 4 недостающие е с рядом находящихся аналогичных атомов, в свою очередь заимствуя им свои внешние е. При этом возникают специфичные обменные силы, обусловленные по парным объединением валентных е соседних атомов. Такая связь называется ковалентной (или просто валентной).

-- --

Овал: -- --

+

-- --

Овал: -- --

а)

b) -- --

Т.к. структура кристалла регулярна, то это приводит к анизотропии - зависимости свойств от направления. Ориентация кристалла задаётся с помощью кристаллографических осей и перпендикулярных им кристаллографических плоскостей. Эти оси и плоскости обозначаются трёхзначными индексами Миллера ( оси (), плоскости () ).

Z (110)

Элементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механики 3| 2 (101)

Элементы квантовой механики 4 1 (100)

Элементы квантовой механики (111)

Элементы квантовой механики

8 7 X (100)

5 Элементы квантовой механики6 (111)

Y a) b) c)

Каждой кристаллографической плоскости соответствует различная плотность _________ атомов, поэтому и различие в свойствах.

Элементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механики

1,4 2,3 4 3 2 4 1,3 2

1,8

5,6 7,8 5 7 5 6,8 7

Элементы квантовой механики 6

Элементы квантовой механики

а) b) c)

НОСИТЕЛИ ЗАРЯДА В ПП.

Электропроводность вещества объясняется наличием свободных носителей заряда, которые могут перемещаться в объёме вещества, либо под воздействием поля, либо при наличии градиента их концентрации в веществе (стремление к выравниванию концентрации).

Как же образуются свободные носители заряда в ПП?

Идеальный ПП при Т = абсолютному нулю (ПП не имеет дефектов кристалла, поэтому валентные е всех атомов участвуют в ковалентных связях, т.е. они не свободные) является идеальным диэлектриком. При повышении Т°(*) электроны приобретают дополнительную энергию и в конечном итоге некоторые ковалентные связи разрываются, образуя свободные е и незаполненную связь – «дырку» вблизи атома с недостающим е (образуется электронная дырочная пара). Такой процесс называется термогенерацией. Отсутствие е недолговечно (время жизни), на его место приходит е из соседних атомов (рекомбинация), т.е. «дырка» дрейфует. Такая проводимость ПП называется собственной проводимостью, а ПП – собственным ПП (особенность – количество е всегда равно количеству «дыр»).

Интересные явления наблюдаются при замещении некоторых атомов Si так называемыми примесными (примесь замещения, есть ещё и примесь внедрения) атомами другой валентности (3 и 5) (копр. 5 вал. Р или 3 вал. бор, Аl).


Элементы квантовой механикиЭлементы квантовой механики



a) b)

В первом случае 9 е атома фосфора легко «отрывается» от него образуя ион +, а е добавляется к собственным свободным е и равновесие – «дырка» нарушается. Проводимость становится преимущественно е – нной (n – проводимость).

Во втором случае все 3 е бора связаны с соседними атомами Si, образуя «дырку», а атом примеси превращается в неподвижный ион -. ПП приобретает дырочную (Р) проводимость. Такие проводимости называются примесными проводимостями. Носители, находящиеся в большинстве, называются основными, другого типа не основными.

ПАРАМЕТРЫ ПОЛУПРОВОДНИКОВ

е отдельно взятого атома зависит от того, на какой оболочке он находятся, имеют строго одиночное значение энергии. Под влиянием межатомных сил в кристалле эти энергетические уровни расширяются и превращаются в энергетическую зону (Эффект Штарка). Нас будет интересовать энергетическая зона внешней оболочки (т.н. валентная зона). Для того, чтобы е покинул валентную зону и стал свободным, обеспечивающим проводимость, ему необходимо сообщить определённую дополнительную энергию, после чего он попадает в так называемую зону проводимости.

Величина дополнительного энергетического импульса различна для различных полупроводников и определяет ширину так называемой запрещённой зоны. Собственно, ширина запрещённой зоны, а, следовательно, и вид зонной диаграммы, и отличает ПП от диэлектрика.

W(энергия)

j Зона проводимости


Зона проводимости

донорная(n)

примесь Запрещённая зона

Запрещённая зона {

акцент.(р)

Валентная зона примесь Валентная зона


ПП Диэлектрик

Таким образом, ширина запрещённой зоны определяет энергию, необходимую для перехода е из валентной зоны в зону проводимости, и является важнейшим параметром ПП. Если е возвращается в валентную зону, то происходит рекомбинация е и дырки.

В электронике оценка энергии е производится величиной

W = gj, где

j - потенциалов, прошедших элементарным зарядом (иногда, энергетическим потенциалом).

В зависимости от количества атомов примеси и от энергии, получаемой е внешних оболочек (в частности от Т° ПП) количество е зоны проводимости будет различно. Но ведь количество носителей тока при наличии поля будет определять, в частности, величину тока в ПП. Поэтому количество таких е («дырок») является важным параметром. Однако, само количество е («дырок») ещё ни о чём не говорит. Важна их концентрация (т.е. количество на единицу объёма).

Концентрация носителей (обозначается n – для е и p – для «дырок») – очень важный параметр ПП. Концентрация сильно зависит от Т° (например, увеличение Т на 5% увеличивает концентрацию на ~ 3 раза) и от ширины запрещённой зоны (обратно пропорционально). В ПП концентрация носителей неравномерна ( т.е. существует градиент концентрации). Такое неравномерное распределение носителей называется Больумановским равновесием и объясняется возникновением внутреннего электрического поля в ПП, препятствующего выравниванию концентрации.

Движение носителей в электрическом поле напряжённостью Е называется дрейфом и величина дрейфового тока:

i = E, где

- удельная проводимость, важный параметр ПП (иногда используют удельное электросопротивление r = 1/).

Т.к. в ПП есть 2 типа носителей, то

s = qnmn + qpmp,где

q – единичный заряд

n и p – концентрация

mn и mp – подвижность носителей, важный параметр ПП.

В вакууме носитель под воздействием поля Е будет двигаться равноускоренно. Другое дело – твёрдое тело. Ускоряясь, носители постоянно «сталкиваются» с атомами (испытывают рассеяние). На длине свободного пробега носители двигаются равноускоренно, затем, столкнувшись, теряют скорость и снова ускоряются. Поэтому средняя дрейфовая скорость _

J = mЕ, где

m - коэффициент пропорциональности, называемый подвижностью носителя, и зависящий от его эффективной массы (для Si me ~ 3mp).

Быстродействие полупроводниковых приборов прямо пропорционально подвижности носителей ПП, на основе которого выполнен прибор.

Подвижность – величина не постоянная и зависит от Т°, причём неоднозначно, например

m Так, для Si m могут меняться в диапазоне рабочих температур

от -50°С до +125°С в 4-5 раз.

Т

ЭФФЕКТ ПОЛЯ

Эффект поля – это изменение концентрации носителей (а, следовательно, проводимости) в приповерхностном слое ПП под воздействием внешнего электрического поля.

Создадим конструкцию МДП:

Элементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механики

+ d++ +++
· · Т.к. есть диэлектрик, то ток не течёт. Из-за свойств

Me Eд диэл. --U +проводника все свободные е сосредоточены на

Элементы квантовой механикиЭлементы квантовой механикиповерхности проводника. На обкладке, представляющей

собой ПП будет наведён такой же заряд, что и в провод

Элементы квантовой механикиЭлементы квантовой механики нике, однако, он будет распределён неравномерно в глубь

кристалла.

Поле в диэлектрике, ввиду отсутствия объёмных

X зарядов, постоянно. В ПП р-типа, при подаче +U

на ПП, на границе ПП – диэлектрик концентрация

U изменений р – типа увеличивается, следовательно, увеличивается и проводимость. Увеличение концентрации оситных носителей в слое называется обогащением (уменьшение – объединением при неизменной полярности U ). По мере уменьшения d эффект поля может исчезнуть за счёт пробоя диэлектрика. Даже если диэлектрик – вакуум, возможен туннельный эффект. Глубина проникновения поля в ПП (фактически, толщина обогащённого слоя) называется длиной Дебая (дебаевская длина). ЭЛЕКТРОННО-ДЫРОЧНЫЕ ПЕРЕХОДЫ

В подавляющем большинстве случаев в микроэлектронике находят применение так называемые p-n переходы, возникающие на границе металл – полупроводник и полупроводник – полупроводник. Комбинация двух ПП различной проводимости обладают вентильными свойствами, т.е. они лучше пропускают поток в одном (прямом) направлении. Практически все реальные p-n переходы - плавные, т.е. в районе металли

p-n переход ческой границы концентрация одних примесей

Элементы квантовой механики

p n
постоянно растёт, а других – убывает. Сама металли

Элементы квантовой механики ческая граница характеризуется равенством p=n.

Как правило, концентрация p и n вне границы

металлическая граница существенно различаются, и такие p-n переходы

называются асимметричными (несимметричными).



Т.к концентрация n >, то число электронов, диффундирующих в область р больше, чем число диффундирующих «дырок» и в слое р вблизи границы оказываются избыточные е, ре-комбинирующие с «дырками» до тех пор, пока не будет равновесия. Следовательно, концентрация «дырок» уменьшится. Аналогично можно рассуждать и по отношению к «дыркам».

Например:

асимметрия

n n,p

идеальный

переход


Х


В идеале считают, что в p-n переходе Ширина перехода (d)

вообще отсутствуют носители и сам p-n переход является наиболее высокоомной частью структуры. Т.к. концентрация p и n различна, то между p и n областями, разделёнными высокоомным переходом, возникает потенциальный барьер. Если к переходу приложить напряжение + и к p-области (такая полярность называется прямой), то высота потенциального барьера уменьшится и


уменьшится его ширина. При обратной номерности - высота барьера и его

Элементы квантовой механики

n p


ширина увеличатся. При прямых напряжениях в каждой из областей появляются избыточные носители и тогда говорят об инжекции носителей, если напряжение обратное, то количество носителей уменьшается, и говорят об

·- + ·Элементы квантовой механики

(+) (-)


экстракции носителей. Причём, если переход симметричный, то инжекция ( экстракция) е и «дырок» - одинаковая. Если переход асимметричный, то считают, что инжекция имеет односторонний характер и главную роль играют носители, инжектируемые из низкоомного (легированного) слоя в высокоомный. Низкоомный (более легированный) слой эмиттером, а высокоомный – базой. Таким образом, если к p-n переходу приложить прямое напряжение, то это приводит к изменению концентрации инжектированных носителей в области базы, а следовательно, изменяется и величина накопленного заряда, обусловленного этими зарядами. Процесс накопления избыточного заряда эквивалентен процессу заряда ёмкости. Поэтому говорят, что p-n переход обладает диффузионной ёмкостью.

Помимо диффузионной p-n переход обладает и барьерной (зарядной) ёмкостью (Сб) (если к p-n переходу приложить обратное напряжение, то на металлической границе носители отсутствуют и мы имеем ярко выраженную ёмкость). Сд и Сб – нелинейные ёмкости. Сд в основном проявляется при прямом включении диода, а Сб – при обратном. Первая зависит от тока Iпр, вторая – от Uобр. Строго говоря, такое разделение чисто условное, но оно удобно при анализе переходных процессов.

Сд и Сб существенно влияют на частотные свойства p-n перехода. Аналитически можно показать, что ВАХ такого p-n перехода описывается экспоненциальной зависимостью (Степаненко стр 82) вида: I/I0

I = I0(e(U/jт) – 1), где

jт – температурный потенциал ~ 25 милливольт

I0 – тепловой ток, сильно зависящий от Т° p-n перехода. · ·

Можно доказать, что:24 U/jт

I0(Т) = I0(Т0)2 DТ/Т*, где

Т0 – средняя температура некоторого температурного диапазона, например - комнатная

DТ – температура - градиент

Т* - так называемая температура удвоения.

В частности для кремния:

I0(Т) @ I0(20°С)2 (Т-20°С /10°С)

Т.е. считают, что I0 изменяется в 2 раза при изменении Т перехода на 10°С (по другим источникам Т* = 5°С).

Прямая ветвь ВАХ довольно крутая и можно считать, что падение U на таком переходе = const практически во всём диапазоне изменения рабочих токов, и при расчётах, обычно, полагают, что

Uдиода пр = 0,7В для нормального режима и

Uдиода пр @ 0,5В на микротоках

ПРОБОЙ P-N ПЕРЕХОДА

На приведённой выше ВАХ изображён только начальный участок обратной ветви. Как пойдёт обратная ветвь при дальнейшем увеличении Uобр?

Дальше – пробой p-n перехода.

Различают три вида (механизма) пробоя: лавинный, туннельный и тепловой.

А) Лавинный пробой происходит если Uобр

ширина p-n перехода (d) больше длины

свободного пробега.

d³ l

В этом случае, не основные носители, ускоряясь Uпробоя в переходе, могут приобрести энергию, достаточную

для ионизации атомов кристаллической решётки.

Выбитые е в свою очередь, ускоряясь, принимают

участие в дальнейшей ионизации. Процесс 1 2 3 I обр носит лавинный характер (ветвь 1).

Скорость нарастания тока характеризуется коэффициентом ударной ионизации,

который зависит в основном от распределения примесей (строго говоря – от

напряжённости электрического поля Е в данной точке). При таком пробое

rp-n = dU/dI

резко уменьшается. Однако, напряжение Up-n не может стать ниже Uпробоя т.к. Е станет < Е ионизации. Поэтому ветвь почти строго вертикальна.

Этот пробой используют для создания ПП приборов – стабилитронов (дать параметры и схему).

В) Туннельный пробой(ветвь 2).

Если d < l, то лавинный пробой невозможен, т.к. носители практически не сталкиваются с атомами решётки. Но возможно туннелирование носителей (см. туннельный эффект). Для уменьшения вероятности такого пробоя, базу изготавливают низколегированной (с высоким сопротивлением), а также увеличивают d (тогда U пробоя увеличивается).

С) Тепловой пробой.

Обратный ток p-n перехода повышает температуру перехода, что, в свою очередь, приводит к увеличению обратного тока и т.д. Если не принимать мер по отводу тепла, то саморазогрев перехода может привести к тепловому пробою (кривая 3).

Отличительная особенность – участок с отрицательным дифференциальным сопротивлением. Iобр зависит от ширины запрещённой зоны, поэтому тепловой пробой при прочих равных условиях чаще будет наблюдаться в Ge, чем в Si. Обычно I обр малы и тепловой пробой сам по себе редко наступает, но может возникнуть, как сопутствующий лавинному или туннельному пробоям. Если в схеме нет строго ограничивающих компонентов, то тепловой пробой приводит к невозвратимому разрушению прибора.

КРАТКАЯ ХАРАКТЕРИСТИКА РАЗЛИЧНЫХ ТИПОВ ПП ДИОДОВ

1) Стабилитроны – имеют оригинальную обратную ветвь ВАХ(лавинный пробой)

2) Туннельные диоды (ТД) – Основаны на туннельном эффекте. Прямая ветвь ВАХ такого диода имеет участок с отрицательным дифференциальным

Сопротивлением, что позволяет создавать генераторы, смесители, I

Переключатели на основе таких p-n переходов. ТД работают

только на основных носителях, следовательно, Сдифф = 0,

поэтому частотные свойства высокие. Изготавливаются ТД

из сильнолегированных ПП. U

3) Импульсные, высокочастотные и СВЧ диоды. Т.к. обычный p-n переход обладает Сд и Сб, и является инерционным прибором, то на время накопления и рассасывания заряда а базе p-n переход теряет выпрямительные свойства. Для характеристики этих свойств p-n перехода принято 2 параметра:

а) время установления rпрямое

в) время восстановления rобратное

Чем меньше эти времена, тем выше частотные свойства

Импульсные fпереключателя > 1мГц

Вч fпереключателя > 150мГц

ВЧ fпереключателя > 1ГГц

4) Диоды Шоттки образуются на границе металл – полупроводник. Работает только на основных носителях (Сд = 0). Уменьшая площадь перехода, уменьшают Сб. Поэтому fпереключателя = 3 – 15 ГГц.

Применяется очень широко.

5) Фотодиоды – основаны на изменениях проводимости в зависимости от освещённости.

6) Светодиоды – используется явление изменения света в некоторых широкозонных ПП (фосфид галия, карбид кремния и т. д.) при рекомбинации е и «дырок».

Гетеропереходы, диоды с накоплением заряда, варикапы, параметрические диоды,

инжекупонные фотодиоды, фотоэлементы координатно-чувствительные фотоприёмники, лазер на основе p-n перехода, инжекупонный гетеролазер, варисторы – особенности этих специфических p-n переходов

см. (6) Вакулин, Стафеев «Физика ПП приборов».

Ранее были гомопереходы.

Гетеропереход – переход между ПП различной физико – химической природы (например Si – Ge, Si – GaAs, GaAs – GaP(фосфид галия)), причём это не обязательно p-n переходы, могут быть и n-n, p-p (различная ширина запрещённой зоны в полупроводниках)

Диоды с накоплением заряда – для формирования фронтовых сигналов.

Вариканы – ёмкость(барьерная), управляемая U

Варисторы – нелинейное полупроводниковое сопротивление

БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ(Т)

Транзистором называют ПП прибор, обладающий усилительными свойствами по мощности. Именно усиление мощности характеризует транзистор, как усилительный прибор. Нельзя говорить о транзисторе, как об усилителе тока. Тогда трансформатор тока является усилителем