Физиология центральной нервной системы
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ЗДРАВООХРАНЕНИЮ И СОЦИАЛЬНОМУ РАЗВИТИЮ
УРАЛЬСКАЯ ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ
КАФЕДРА НОРМАЛЬНОЙ ФИЗИОЛОГИИ
КУРСОВАЯ РАБОТА
ФИЗИОЛОГИЯ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ
ОСНОВНЫЕ ФУНКЦИИ ЦНС. ПОТЕНЦИАЛЫ ПОКОЯ И ДЕЙСТВИЯ
Строение биологической мембраны, ионоселективного канала
Биологическая мембрана – это функционально активная структура клетки, ограничивающая цитоплазму и большинство внутриклеточных структур, образующая единую систему канальцев, складок и замкнутых полостей.
Виды электрических явлений в возбудимых тканях
БИОПОТЕНЦИАЛ
В ПОКОЕ ПРИ ВОЗБУЖДЕНИИ
МПП МПКП МЕСТНОЕ РАСПРОСТРАНЯЮЩИЙ
ВОЗБУЖДЕНИЕ ВОЗБУЖДЕНИЕ
ЛОКАЛЬНЫЙ ПОТЕНЦИАЛ
ОТВЕТ ДЕЙСТВИЯ
МПП – мембранный потенциал покоя
МПКП – миниатюрный потенциал концевой пластинки (синапс)
ВПСП – возбуждающий постсинаптический потенциал
ТПСП – тормозной постсинаптический потенциал
Свойства локального ответа и потенциала действия
свойства | локальный ответ | потенциал действия |
сила стимула распространение зависимость величины от силы стимула явление суммации амплитуда возбудимость ткани при возникновении потенциала | возникает на допороговые стимулы распространяется на 1-2 мм с затуханием возрастает с увеличением силы стимула, т.е. подчиняется закону «силы» суммируется – возрастает при повторных частых допороговых раздражениях 10 – 40 мВ увеличивается | возникает на пороговые и сверхпороговые стимулы распространяется без затухания на большие расстояния по всей длине нервного волокна не зависит, подчиняется закону «все или ничего» не суммируется 80 – 130 мВ уменьшается вплоть до полной невозбудимости (рефрактерность) |
РЕЦЕПТОРНОЕ ПОЛЕ, СТРОЕНИЕ И ФУНКЦИЯ РЕЦЕПТОРОВ, РЕЦЕПТОРНЫЙ ПОТЕНЦИАЛ
Свойства рецепторного потенциала:
- генерируется в самих нервных окончаниях;
- является градуальным (стимулами разной интенсивности деполяризуются или гиперполяризуются;
- амплитуда рецепторного потенциала отражает силу стимуляции, хотя последняя не служит для него источником энергии;
- является локальным – распространяется по мембране электротонически, а не проводится активно;
- подвергается пространственной и временной суммации (два слабых одиночных стимула вместе могут вызвать надпороговую деполяризацию).
Классификация рецепторов
1. По физической природе раздражителя:
- механорецепторы
- хеморецепторы
- фоторецепторы
- фонорецепторы
- терморецепторы
- вестибулорецепторы
- проприорецепторы
2. По характеру ощущений:
- слуховые
- зрительные
- обонятельные
- вкусовые
- тактильные
- температурные
- болевые
3. По степени адаптации:
- быстро адаптирующиеся (фазные)
- медленно адаптирующиеся (тонические)
- смешанные (фазно-тонические) – адаптирующиеся со средней скоростью (например, фоторецепторы сетчатки, терморецепторы кожи)
- практически не адаптирующиеся (терморецепторы гипоталамуса)
4. По степени специфичности, т.е. по их способности отвечать на одни или более видов раздражителей:
- мономодальные или моносенсорные (например, зрительные, слуховые,
вкусовые, хеморецепторы каротидного синуса и др.)
- полимодальные или полисенсорные (например, ирритатные рецепторы легких, воспринимающих как механические (частицы пыли), так и химические (пахучие вещества) раздражители во вдыхаемом воздухе);
- ноцицепторы (болевые) рецепторы
5. По структурно-функциональному организации:
- первично чувствующие рецепторы – представляют собой чувствительные окончания дендрита афферентного нейрона (тактильные, обонятельные, проприорецепторы)
- вторично чувствующие рецепторы – имеется специальная клетка, синоптически связанная с окончанием дендрита сенсорного нейрона, чаще всего эпителиальной природы (слуховые, вкусовые, фоторецепторы сетчатки).
6. По отношению к внешней среде:
- экстерорецепторы – воспринимают информацию из внешней среды (зрительные, вкусовые, слуховые, обонятельные, тактильные, кожные болевые и температурные)
- интерорецепторы – воспринимают информацию от внутренних органов (висцерорецепторов), сосудов и ЦНС
- вестибулорецепторы – занимают промежуточное положение, находятся внутри организма, но возбуждаются внешними стимулами.
7. По взаиморасположению раздражителя и рецептора:
- дистантные – воспринимающий раздражитель находится на расстоянии (зрительные, слуховые)
- контактные – непосредственный контакт с раздражителем (вкус).
Характеристика первично - и вторично чувствующих рецепторов
Первично чувствующие рецепторы | Вторично чувствующие рецепторы |
нет специальной рецепторной клетки воспринимает стимул чувствительным окончанием афферентного нейрона нет выделения медиатора рецепторный и генераторный потенциалы совпадают ПД возникает у основания аксона (аксонный холмик) или в первом перехвате Ранвье аксона | имеется специальная рецепторная клетка воспринимает стимул специальная рецепторная клетка, которая связана с окончанием афферентного нейрона синапсом выделяется медиатор генераторный потенциал образуется на постсинаптической мембране возникновение ПД вблизи постсинаптической мембране |
Этапы развития электрических явлений при действии стимула в первично - и вторично чувствующих рецепторах
СТИМУЛ
РЕЦЕПТОРНЫЙ ПОТЕНЦИАЛ
ПОТЕНЦИАЛ ДЕЙСТВИЯ
СТИМУЛ
РЕЦЕПТОРНЫЙ ПОТЕНЦИАЛ
МЕДИАТОР
ГЕНЕРАТОРНЫЙ ПОТЕНЦИАЛ
УСТРОЙСТВО СИНАПСА И МЕХАНИЗМ ПЕРЕДАЧИ ВОЗБУЖДЕНИЯ
Строение синапса
Синапс – это специализированная структура, обеспечивающая передачу нервного импульса с аксона на другую клетку.
Классификация синапсов:
1. По виду соединяемых клеток:
- межнейронные синапсы – находятся в ЦНС и вегетативных ганглиях;
- нейроэффекторные синапсы - соединяют эфферентные нейроны соматической и вегетативной нервной системы с исполнительными клетками –поперечнополосатыми и гладкими миоцитами, секреторными клетками;
- нейрорецепторные синапсы – относятся контакты во вторично чувствующих рецепторах между рецепторной клеткой и дендритом афферент. нейрона.
2. По эффекту:
- возбуждающие, т.е. запускающие генерацию ПД;
- тормозные, т.е. препятствующие возникновению ПД.
3. По способу передачи сигнала:
- химические синапсы – передача осуществляется с помощью химического посредника – медиатора;
- электрические синапсы – ПД непосредственно (электротонически) передается на постсинаптическую клетку;
- смешанные синапсы – наряду с химической передачей имеются участки с электротоническим механизмом передачи (например, в реснитчатом ганглии птиц, спинном мозге лягушки).
4. По природе медиатора химические синапсы:
- холинергические (медиатор – ацетилхолин);
- адренергические (норадреналин);
- дофаминергические (дофамин);
- ГАМКергические (ГАМК);
- глутаматергические (глутамат);
- аспартатергические (аспартат);
- пептидергические (пептиды);
- пуринергические (АТФ).
5. По форме контакта химические синапсы:
- терминальные (колбообразное соединение);
- преходящие (варикозное расширение аксона).
6. По местоположению:
- центральные (головной и спинной мозг);
- периферические.
7. По скорости передачи возбуждения (сигнала):
- быстро возбуждающие – в передаче принимают участие классические медиаторы, потенциал сохраняется короткий промежуток времени;
- медленно возбуждающие – локализованы в спинном мозге, относятся к пептидным синапсам, постсинаптические потенциалы сохраняются в течение нескольких минут.
8. По развитию в онтогенезе:
- стабильные (например, синапсы дуг безусловного рефлекса);
- динамичные, появляющиеся в процессе индивидуального развития.
РЕФЛЕКТОРНАЯ ТЕОРИЯ ФУНКЦИОНИРОВАНИЯ ЦНС. РЕФЛЕКС, РЕФЛЕКТОРНАЯ ДУГА, ВРЕМЯ РЕФЛЕКСА
Рефлекторная дуга – это совокупность структур, при помощи которых осуществляется рефлекс.
Схематично рефлекторную дугу вегетативного и соматического рефлексов можно представить состоящей из 5 звеньев:
1. рецептор – предназначен для восприятия изменений внешней или внутренней среды организма. Совокупность рецепторов, раздражение которых вызывает рефлекс, называют рефлексогенной зоной.
2. афферентный путь – передает сигнал в ЦНС.
3. вставочные нейроны ЦНС – обеспечивают связь с другими отделами ЦНС, переработка и передача импульсов к эфферентному нейрону.
4. эфферентные нейроны – вместе с другими нейронами перерабатывают информацию, сформировывают ответ в виде нервных импульсов.
5. эффектор – рабочий орган.
Классификация рефлекторной дуги:
1. По количеству нейронов:
- моносинаптическая – самая простая рефлекторная дуга, состоящая из двух нейронов: афферентного и эфферентного;
- полисинаптическая – представлена 3 и более последовательно соединенными нейронами.
Нервный центр – это совокупность нейронов, расположенных на различных уровнях ЦНС, достаточных для регуляции функции органа согласно потребностям организма или для осуществления рефлекторного акта.
Свойства нервных центров во многом определяется структурой и функцией синоптических образований:
1 – односторонность проведения возбуждения;
2 – иррадиация (дивергенция) возбуждения – объясняется ветвлением аксонов нейронов (в среднем нейрон образует до 1000 окончаний) и их способностью устанавливать многочисленные связи с другими нейронами, наличием вставочных нейронов, аксоны которых тоже ветвятся;
3 – суммация возбуждения (как временная, так и пространственная);
4 – наличие синоптической задержки;
5 – высокая утомляемость (в результате истощения запасов медиатора в синапсе, уменьшение энергетических ресурсов, адаптации постсинаптического рецептора к медиатору);
6 – наличие определенной фоновой активности или тонуса (поскольку и при полном покое определенное количество нервных клеток находится в состоянии постоянного возбуждения, генерируя фоновые импульсные потоки);
7 – пластичность – способность нервных элементов к перестройке функциональных свойств; основные проявления этого свойства – синоптическое облегчение, синоптическая депрессия, доминанта и компенсация нарушенных функций;
8 – конвергенция возбуждения (принцип общего конечного пути) – схождение возбуждения различного происхождения по нескольким путям к одному и тому же нейрону или нейронному пулу (принцип воронки Шеррингтона); это объясняется наличием многих аксонных коллатералей, вставочных нейронов, а также тем, что афферентных путей в несколько раз больше, чем эфферентных нейронов;
9 – интеграция
10 – свойство доминанты, т.е. способность притягивать к себе возбуждение других возбужденных зон или нервных центров;
11 – цефализация, т.е. перемещение в процессе эволюции и сосредоточение функции регуляции и координации деятельности организма в головных отделах ЦНС;
12 – высокая чувствительность к недостатку кислорода и химическим веществам.
Время от момента нанесения раздражения до конечного эффекта (время рефлекса) достигает 50 – 100 мс. Центральное время – промежуток времени, в течение которого импульс пробегает по структурам мозга. Для прохождения одного синапса требуется около 1,5 мс. Т.е. центральное время рефлекса косвенно указывает на число синаптических передач, имеющих место в данном рефлексе. При полисинаптической рефлекторной дуге центральное время рефлекса больше 3 мс (если 2 синаптических переключения – то около 4-6 мс).
ВОЗБУЖДЕНИЕ И ТОРМОЖЕНИЕ В ЦНС
Торможение – активный нервный процесс, результатом которого является прекращение или ослабление возбуждения. Торможение всегда возникает как следствие возбуждения.
Классификация торможения:
I По локализации:
1 – пресинаптическое торможение – развертывается в аксо-аксональных синапсах, блокируя распространение возбуждения по аксону (часто выявляется в структурах мозгового ствола, в спинном мозге). Протекает по принципу катодической депрессии: в области контакта выделяется медиатор (ГАМК), вызывающий стойкую деполяризацию, что нарушает проведение волны возбуждения через этот участок.
2 – постсинаптическое торможение – основной вид торможения, развивается на постсинаптической мембране аксосоматических и аксодендрических синапсов под влиянием тормозных нейронов, в концевых аксонных отростках которых освобождается тормозной медиатор (ГАМК, глицин). Действие медиатора вызывает в постсинаптической мембране эффект гиперполяризации в виде ТПСП, пространственно-временная суммация которых повышает уровень МП (увеличивает гиперполяризацию), приводит к урежению или полному прекращению генерации ПД.
Если рассмотреть «архитектуру» использования тормозных нейронов при организации нейронных сетей, цепей и рефлекторных дуг, то можно выделить ряд вариантов этой организации:
1 – реципрокное торможение. Пример, сигнал от мышечного веретена поступает с афферентного нейрона в спинной мозг, где переключается на альфа-мотонейрон сгибателя и одновременно на тормозной нейрон, который тормозит активность альфа-мотонейрона разгибателя. Явление открыто Ч.Шеррингтоном.
2 – возвратное торможение. Пример, альфа-мотонейрон посылает аксон к соответствующим мышечным волокнам. По пути от аксона отходит коллатераль, которая возвращается в ЦНС – она заканчивается на тормозном нейроне (клетка Реншоу) и активирует ее. Тормозной нейрон вызывает торможение альфа-мотонейрона, который запустил всю эту цепочку. Т.о. альфа-мотонейрон, активируясь, через систему тормозного нейрона сам себя тормозит.
3 – латеральное торможение (вариант возвратного). Пример, фоторецептор активирует биполярную клетку и одновременно рядом расположенный тормозной нейрон, блокирующий проведение возбуждения от соседнего фоторецептора к ганглиозной клетке («вытормаживание информации» - 2 точки на сетчатке рассматриваются как раздельные точки, если между ними есть невозбужденные участки).
II По природе нейронов:
1 – ГАМКергическое,
2 – глицинергическое,
3 – смешанное.
Особенности пресинаптического и постсинаптического торможения
свойства | Пресинаптическое торможение | постсинаптическое торможение |
нейроны | ГАМКергические | ГАМКергические глицинергические |
рецепторы и их расположение | ГАМК1 локализованы на нейронах гиппокампа, мозжечка, гипоталамуса, коры больших полушарий, аксонах первичных афферентных клеток. | ГАМК1 ГАМК2 расположены в основном на терминалях моноаминергических нервных волокон и при возбуждении тормозят секрецию медиатора Глицин обнаружен, кроме клеток Реншоу, в стволе мозга. |
Ионный механизм | Cl- | Cl-K+ (ГАМК2) |
блокаторы | бикукуллин, столбнячный токсин | стрихнин, столбнячный токсин |
Схема реципрокного торможения ЦНС на примере мышц – антагонистов (сгибателей и разгибателей).
При раздражении кожных рецепторов возникает защитный сгибательный рефлекс: центр сгибания возбужден, а центр разгибания заторможен. В этом случае возбуждающие импульсы поступают к центру мышцы-сгибателя, а через тормозную клетку Реншоу – к центру мышцы-антогониста – разгибателю, что предотвращает ее сокращение.
Характеристика вторичного торможения в ЦНС
Вторичное торможение – торможение из текущего возбуждения (в результате возбуждения). Наиболее обще правило такого перехода, по Н.Е.Введенскому, заключается в том, что возбуждение переходит в торможение, когда раздражитель по своей силе или частоте становится пессимальным для данного функционального состояния ткани. Такие обратимые переходы наглядно выявлены при раздражении нервно-мышечного аппарата токами разной силы: ток умеренной силы вызывает мощное сокращение – это оптимум силы раздражения. Увеличение же силы тока не усиливает сокращение, но тормозит их, что говорит о достижении пессимума силы раздражения.
КООРДИНАЦИЯ ДЕЯТЕЛЬНОСТИ ЦНС, КОДИРОВАНИЕ ИНФОРМАЦИИ
Координационная деятельность ЦНС – это согласование деятельности различных отделов ЦНС с помощью упорядочения распространения возбуждения между ними. Основой координационной деятельности ЦНС является взаимодействие процессов возбуждения и торможения.
По сути этот вид управления – функциональные системы (ФС) в понимании П.К.Анохина. По мнению П.К.Анохина, любая функциональная система состоит из 5 основных компонентов:
1. полезный приспособительный результат (ведущее звено ФС);
2. рецептор результата;
3. обратная афферентация – информация, идущая от рецептора в центр;
4. центральная архитектура – нервные центры;
5. исполнительные компоненты.
Принцип декодирования информации в ЦНС
Декодирование информации в ЦНС проходит в коре полушарий большого мозга, высокая скорость декодирования. Каждая зона коры полушарий отвечает за свои функции.
Отличие процессов кодирования и декодирования информации
кодирование | декодирование |
- происходит в анализаторе - не высокая скорость кодирования - виды кодирования информации в ЦНС: 1 – аналоговое; 2 – частотное; 3 – позиционное; 4 – временное. | - происходит в коре полушарий большого мозга - высокая скорость декодирования - каждая зона коры отвечает за свои индивидуальные функции |
Процесс конвергенции в ЦНС
Явление конвергенции или принцип общего конечного пути – схождение возбуждения различного происхождения по нескольким путям к одному и тому же нейрону или нейронному пулу. Это объясняется наличием многих аксонных коллатералей, вставочных нейронов, а также тем, что афферентных путей в несколько раз больше, чем эфферентных нейронов. Например, сокращение мышцы (за счет возбуждения альфа-мотонейрона) можно вызвать за счет растяжения мышцы или путем раздражения кожных рецепторов (сгибательный рефлекс).
Дивергенция – способность нервной клетки устанавливать многочисленные синоптические связи с различными нервными клетками, это объясняется ветвлением аксонов нейронов (в среднем нейрон образует до 1000 окончаний) и их способностью устанавливать многочисленные связи с другими нейронами, наличием вставочных нейронов, аксоны которых тоже ветвятся. Обеспечивает иррадиацию возбуждения в центральных нервных образованиях. Тормозные процессы ограничивают дивергенцию и делают процессы управления более точными. Когда торможение снимется, то происходит полная дискоординация в деятельности ЦНС (например, при столбняке).
ДОМИНАНТА, ЕЕ ФИЗИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ ДЛЯ ЦНС
Доминанта – это стойкий, господствующий очаг возбуждения, подчиняющий себе активность других нервных центров.
Свойства доминантного очага:
- он стойкий (его трудно затормозить);
- интенсивность его возбуждения усиливается слабыми раздражителями;
- тормозит другие потенциальные доминантные очаги.
Доминанта как один из основных принципов координационной деятельности ЦНС имеет важное значение в жизни человека. Например, именно благодаря доминанте возможно сосредоточение психической деятельности (внимание) и выполнение умственной или физической деятельности (в данном случае – это трудовая доминанта). В период поиска пищи и поедания возникает пищевая доминанта. Существуют половая, оборонительная и другие виды доминант. Доминантность того или иного очага определяется состоянием организма.
ФИЗИОЛОГИЯ СПИННОГО МОЗГА. РЕФЛЕКТОНЫЕ ЦЕНТРЫ СПИННОГО МОЗГА
Функции спинного мозга
1. Проводниковая – обеспечение связи в обоих направлениях. Функция осуществляется с помощью нисходящих и восходящих путей.
2. Собственно рефлекторная функция (сегментарная). Рефлексы спинного мозга достаточно просты. По форме это в основном сгибательные и разгибательные рефлексы сегментарного характера. Сила и длительность спинальных рефлексов, как и рефлексов других отделов ЦНС, увеличиваются при повторном раздражении, при увеличении площади раздражаемой рефлексогенной зоны вследствие суммации возбуждения, а также при увеличении силы стимула.
Между ними сложные взаимоотношения: подчинение сегментарной деятельности надсегментарным центрам различных функциональных уровней.
Виды спинальных рефлексов
Сегмент спинного мозга (метамер) – участок спинного мозга, соответствующий двум парам корешков спинномозговых нервов (паре спинномозговых нервов), расположенных на одном уровне.
Различают 8 шейных, 12 грудных, 5 поясничных, 5 крестцовых и 1 копчиковый сегменты.
Дорсальные корешки формируют афферентные входы спинного мозга, они образованы центральными отростками волокон первичных афферентных нейронов, тела которых вынесены на периферию и находятся в спинномозговых ганглиях.
Вентральные корешки образуют эфферентные выходы спинного мозга, в них проходят аксоны мотонейронов, а также преганглионарных нейронов вегетативной нервной системы.
ФИЗИОЛОГИЯ МЫШЦ И ИХ ИННЕРВАЦИЯ, НЕРВНО-МЫШЕЧНАЯ ПЕРЕДАЧА
Строение мышцы. Классификация мышечных волокон
1 – быстрые (фазные);
2 – медленные (тонические).
Типы мышечной ткани:
1 – скелетная – мышцы прикрепляются к костям скелета;
2 – сердечная;
3 – гладкая – мышечные слои внутренних органов.
Характеристика быстрых и медленных мышечных волокон
быстрые мышечные волокна | медленные мышечные волокна |
высокое содержание миофибрилл при небольшом объеме саркоплазмы | мало мышечных волокон |
мало миоглобина («белые») | много миоглобина («красные») |
малая сеть капилляров | большая сеть капилляров |
длительность сокращений 10 – 30 мс | длительность сокращений 100 мс |
возбуждение импульсами частотой 50 в сек | возбуждение импульсами частотой 10 -15 в сек |
большая сила сокращений | малая сила сокращения |
более утомляемы | менее утомляемы |
моносинаптическая иннервация | полисинаптическая иннервация |
запуск сокращений только через ПД | запуск сокращений через ПД и градуальную деполяризацию |
могут выполнять кратковременную, но мощную работу | могут выполнять долговременную, но слабую работу |
ФИЗИОЛОГИЯ ГОЛОВНОГО МОЗГА. ФИЗИОЛОГИЯ СТВОЛА ГОЛОВНОГО МОЗГА И МОЗЖЕЧКА
Ствол мозга включает продолговатый мозг, мост, средний мозг, промежуточный мозг, мозжечок.
Функции
- Организует рефлексы, обеспечивающие подготовку и реализацию различных форм поведения.
- Осуществляет проводниковую функцию: через ствол мозга проходят в восходящем и нисходящем направлении пути, связывающие между собой структуры ЦНС.
- Обеспечивает ассоциативную функцию, т.е. взаимодействие своих структур между собой, со спинным мозгом, базальными ганглиями и корой больших полушарий.
Продолговатый мозг является продолжением спинного мозга. Не имеет метамерного, повторяемого строения, серое вещество расположено не в центре, а ядрами к периферии.
Образования продолговатого мозга:
1 – оливы, связанные со спинным мозгом, экстрапирамидной системой и мозжечком – это тонкое и клиновидное ядра проприоцептивной чувствительности (ядра Голля и Бурдаха); перекресты нисходящих и восходящих путей, образованных тонким и клиновидным пучками (Голля и Бурдаха);
2 – ретикулярная формация;
3 – ядра черепных нервов:
- VIII – преддверно-улиткового (улитковое ядро),
- IX – языкоглоточного (ядро из 3-х частей – двигательной, чувствиительной, вегетативной),
- X – блуждающего (3 ядра),
- XI – добавочного (двигательное ядро),
- XII – подъязычного (двигательное ядро).
За счет ядерных образований и ретикулярной формации продолговатый мозг участвует в реализации вегетативных, соматических, вкусовых, слуховых, вестибулярных рефлексов. Его ядра обеспечивают выполнение сложных рефлексов, требующих последовательного включения разных мышечных групп (например, глотание).
Сенсорная функция связана с чувствительными ядрами черепных нервов, в которых импульсация с первых афферентных нейронов переключается на вторые нейроны. В них осуществляется первичный анализ сила и качества (вида) раздражителей, обработанная информация передается в высшие афферентные центры.
- Вкусовая чувствительность анализируется в ядрах лицевого, языкоглоточного и блуждающего нервов.
- Чувствительность кожи и слизистых оболочек лица и головы (тактильная, температурная, болевая), а также мышечно-суставная анализируется в ядрах тройничного нерва.
- Интероцептивная чувствительность органов головы, грудной и брюшной полостей оценивается в ядрах блуждающего и языкоглоточного нервов.
- Слуховая и вестибулярная чувствительность анализируется в соответствующих ядрах преддверно-улиткового нерва.
Проводниковая функция.
Через продолговатый мозг проходят все восходящие и нисходящие пути спинного мозга. В нем заканчиваются восходящие пути проприоцептивной чувствительности из спинного мозга: тонкого и клиновидного. В нем заканчиваются пути из коры больших полушарий – корковоретикулярные пути. Продолговатый мозг имеет двусторонние связи с образованиями головного мозга, как мост, средний мозг, мозжечок, таламус, гипоталамус, кора больших полушарий.
Рефлекторная функция.
Защитные рефлексы: рвоты, чихания, кашля, слезоотделения, смыкания век.
Рефлексы пищевого поведения: сосания, жевания, глотания. Организуются путем последовательного включения мышечных групп головы, шеи, грудной клетки, диафрагмы.
Рефлексы поддержания позы: статистические – регулируют тонус скелетных мышц с целью удержания определенного положения тела и статокинетические – обеспечивают перераспределение тонуса мышц для организации позы, соответствующей моменту прямолинейного или вращательного движения.
Центры продолговатого мозга:
- центр слюноотделения, парасимпатическая часть которого обеспечивает усиление общей секреции, а симпатическая – белковой секреции слюнных желез.
- дыхательный центр локализуется в медиальной части ретикулярной формации каждой симметричной половины продолговатого мозга.
- сосудодвигательный центр находится в ретикулярной формации.
Мост (варолиев мост) располагается выше продолговатого мозга.
Функции моста:
1- Сенсорные функции обеспечиваются:
- улитковыми и преддверными (треугольное, латеральное – Дейтерса, верхнее – Бехтерева) ядрами преддверно-улиткового нерва (первичный анализ вестибулярных раздражений, их силы и направленности);
- чувствительным ядром тройничного нерва (сигналы от рецепторов кожи лица, передних отделов волосистой части головы, слизистой оболочки носа и рта, конъюнктивы глазного яблока).
2 – Двигательные функции обеспечиваются:
- двигательным ядром тройничного нерва (V) – иннервирует жевательные мышцы, мышцы, натягивающие барабанную перепонку, мышцу, натягивающую небную занавеску;
- лицевой нерв (VII) иннервирует все мимические мышцы лица;
- отводящий нерв (VI) иннервирует прямую латеральную мышцу, отводящую глазное яблоко кнаружи.
3 – Проводящие функции:
- в покрышке моста – длинный медиальный и тектоспинальный пути;
- переднее и заднее ядро трапециевидного тела и латеральной петли обеспечивают первичный анализ информации от органов слуха и затем передают ее в задние бугры четверохолмий.
- ретикулоспинальный путь.
4 – Интегративные рефлекторные реакции.
Функциональные связи мозжечка. Симптомы после удаления мозжечка
Адиадохокинез – невозможность быстро выполнять чередующиеся противоположные по направлению движения.
Асинергия – нарушение деятельности мышц – синергистов.
Астазия – нет слитного тетанического сокращения мышц.
Астения – быстрая утомляемость.
Атаксия – недостаточная координация движений.
Атония (дистония) – нарушение регуляции мышечного тонуса.
Деэквилибрация – нарушение равновесия.
Дизартрия – расстройство артикуляции.
Дисметрия – избыточность или недостаточность амплитуды целенаправленных движений.
Тремор – дрожание пальцев рук, кистей, головы в покое, усиливающиеся при движении.
Через стволовые моторные центры и их тракты осуществляется регуляция установки тела в пространстве, направленной на сохранение нормальной позы тела и равновесия. Эти рефлексы изучены голландским физиологом Р.Магнусом (1924), который разделил их на две группы:
I – статические рефлексы, которые обуславливают положение тела и его равновесие в покое:
1 – рефлексы позы – возникают при изменениях положениях головы (сдвиг центра равновесия) и направлены на создание удобной позы.
2 – выпрямительные рефлексы – благодаря им организм способен принимать естественную позу при ее нарушении.
3 – рефлексы компенсаторного положения глаз – обеспечивают правильное видение при различных положениях головы относительно тела и в пространстве.
II – статокинетические рефлексы – возникают при ускорениях прямолинейного и вращательного движений организма. Сокращения мышц при этом направлены на преодоление действующих на человека ускорений, сохранение нормальной позы, равновесия и ориентации в пространстве.
1 – рефлексы прямолинейного ускорения (например, лифтный рефлекс: при подъеме вверх повышается тонус сгибателей ног, а при опускании вниз возрастает тонус разгибателей);
2 – рефлексы вращения – включают мышцы тела и глазные мышцы например, нистагм глазных яблок и головы: медленное вращение в сторону, противоположную вращению, и быстрый возврат в сторону вр