Ссылка на архив

Розрахунок керованого випрямляча та системи імпульсно-фазового керування

ЗАВДАННЯ

на проектування з дисципліни

«Електроніка та мікросхемотехніка»

Кафедра автоматизації виробничих процесів

Варіант № 34

Тема: “Розрахунок керованого випрямляча та системи імпульсно-фазового керування”

Вихідні дані:

1) Для випрямляча:

· напруга живлення () – 380;

· напруга на навантаженні () – 80;

· струм на навантаженні () – 30;

· глибина регулювання () – 10.

2) Для СІФУ:

· напруга живлення () – 380;

· напруга управління () – 0…8.

3) Для блока живлення:

· напруга живлення () – 380;

· вихідна напруга () – 12;

· струм на навантаженні () – 0,3;

· коефіцієнт стабілізації () – 100.


ПИТАННЯ ДЛЯ ПРОРОБКИ

1. Розрахунок силової частини керованого випрямляча.

2. Проектування системи імпульсно-фазового керування.

3. Розрахунок джерела живлення.

4. Моделювання силової частини керованого випрямляча.

Завдання видане15.10.2004р.

Строк захисту13.12.2004р.

Завдання прийняте до виконання __________________(Наталюткін М.І.)

Керівник __________________(Сус С.П.)


Реферат

Курсова робота присвячена розрахунку елементів керованого випрямляча, системи імпульсно-фазового керування для керованого випрямляча та блока живлення СІФУ.

Курсова робота містить 30 сторінок, 12 ілюстрацій, 1 додаток та 1 креслення (схема керованого випрямляча в зборі).


Зміст

Вступ

1 РОЗРАХУНОК СИЛОВОЇ ЧАСТИНИ КЕРОВАНОГО ВИПРЯМЛЯЧА

1.1 Вибір схеми та розрахунок основних параметрів випрямляча в некерованому режимі

1.2 Розрахунок основних параметрів випрямляча в керованому режимі

1.3 Розрахунок регулювальної характеристики керованого випрямляча

1.4 Розрахунок регулювальної характеристики керованого випрямляча

1.5 Вибір захисту тиристорів від перевантажень за струмом та напругою

2 ПРОЕКТУВАННЯ СИСТЕМИ ІМПУЛЬСНО-ФАЗОВОГО КЕРУВАННЯ

2.1 Розрахунок параметрів пускових імпульсів

2.2 Розрахунок параметрів елементів кола керування тиристорами

2.3 Розрахунок параметрів елементів блокінг-генератора

2.4 Розрахунок елементів генератора пилкоподібної напруги

2.5 Розрахунок вхідного кола генератора пилкоподібної напруги

2.6 Розрахунок елементів блока синхронізації

2.7 Побудова регулювальних характеристик випрямляча

3 РОЗРАХУНОК ДЖЕРЕЛА ЖИВЛЕННЯ

3.1 Вибір схеми та розрахунок основних параметрів джерела живлення

3.2 Розрахунок однофазного мостового випрямляча

Висновки

Перелік посилань

Додатки

Додаток А


2.1 Розрахунок параметрів пускових імпульсів

Визначаємо потрібну тривалість імпульсу керування . У попередньому розрахунку був визначений кут комутації вентилів . Тривалість імпульсу керування обираємо з умови . Переведемо тривалість імпульсу в секунди (=56мкс): .

Сигнал подається на тиристор через , тому період повторення імпульсів визначається як

Для тиристора Т151-100-13 струм та напругу керування:

2.2 Розрахунок параметрів елементів кола керування тиристорами

Схема підключення ланцюга керування має такий вигляд (рис. 2.1).

Рисунок 2.1 — Схема підключення ланцюга керування тиристорами

В якості розв’язки застосований діодно-оптотиристорний модуль VE1. Виконаємо розрахунок елементів ланцюга керування тиристорами.

Шунтуючий діод VD3, для надійного закриття тиристора обираємо за умови: Uобр.доп>Uxx=324,24 (B);

.

Приймаємо діод типу ВЛ100.

Через оптотиристор оптрону проходить струм керування силового тиристора =300 (мА). Тоді величину опору обмежуючого резистора R10 знаходимо за такої умови:

,

де Uy – Напруга відкритого тиристора, Uy = 4 (В).

Визначаємо потужність розсіювання на резисторі R10, за умови імпульсного характеру керування:

.

Приймаємо до установки резистор ТВО-2-100 Ом±20%.

З джерела (1) обираємо стандартний діодно-оптотиристорний модуль. Вибір провозимо за  – середньому значенню струму через оптотиристор:


Приймаємо до установки модуль МДТО80-12 з параметрами:

Рисунок 2.2 — Схема ланцюга керування тиристорами

Крізь світодіод оптрона проходить струм керування . Величина опору обмежуючого резистора R8 значодимо з умови, що коефіцієнт трансформації TV2 приймаємо , і максимальну напругу на вторинній обмотці TV2 буде дорівнювати U2 =Eк/5= 30/5=6 (В).

,

де Uy – спадання напруги на свтодіоді оптрону.

Визначаємо потужність розсіювання на риезисторі R8:

.

Приймаємо до установки резистор типу ОМЛТ-0,125-47±1%.

Внутрішній опір керування оптотиристора:


.

Тоді повний опір навантаження ланцюга керування тиристорами:

Rн = Ry + R8 = 47+31,25 = 78,25 (Ом).

Для захисту світодіоду оптрона від перенапруг, які виникають на обмотках трансформатора TV2 при знятті импульсу керування, обмотка TV2 шунтується діодом VD8. Діод обираємо з умови Uобр > 2Eк =60 (B); Iпр = Iм = Iy = 0,08 (А), де Iм – струм намагнічення трансформатора TV2.

Обираємо до установки діод КД109Б з наступними параметрами:

Uобр = 100 (В), Iпр = 0,3 (А).

2.3 Розрахунок параметрів елементів блокінг-генератора

Схема блокінг-генератора представлена на рисунку 2.3.


Рисунок 2.3 — Схема блокінг-генератора

Максимальний струм в ланцюгу колектора VT2 (струм первинної обмотки Wk) визначимо як .

Допустиму напругу на колекторі визначимо як:

.

Визначимо імпульсну потужність колекторного ланцюга:

.

Визначимо середню потужність вихідного каскаду:


.

З довідника за даними Uкэ.доп, Im, Pn обираємо транзистор КТ601М з наступними параметрами:

- максимальна напруга колектор-емітер Uкэ.max = 100 (B);

- максимальний струм колектора Iк.max = 0,03 (А);

- максимальна розсіювана потужність Pк.max = 0,5 (Вт).

З довідника (3) беремо вхідні та вихідні характеристикии (малюнок 2.4) та бужуємо характеристики навантаження за постійним та змінним струмом.

Рисунок 2.4 — Вхідні та вихідні характеристики транзистора КТ601М (КТ601А)

Визначимо приведений опір в ланцюгу колектора:

.

Визначимо струм короткого замикання .

Визначимо напругу холостого ходу      .

Будуємо лінію навантаження за постійним струмом. В момент перетину Iб = 50 (мкА) (струм відсічки) з лінією навантаження отримаємо робочу точку А. В результаті графічних будувань знаходимо: струм спокою Iкo = 5 (мА) и Uкo = 20 (В).

Визначаємо струм короткого замикання за змінним струмом :

,

де  - коефіцієнт робочої точки при збільшенні температури .

З точки  = 23,3 (мА) крізь точку А проводимо пряму навантаження за змінним струмом. Графічно знаходимо максимальний струм бази Iб.макс = 250 (мкА).

Визначаємо величину опору змінному струму:

.

З графічних побудов знаходимо:


Uкн = 2,5 (B); Iкн = I”к = 23,3 (мА);Uб0 = 1,35 (В); Uб.макс = 2,85 (В).

Тоді ; .

.

Коефіцієнт підсилення каскада .

Задаючись спаданням напруги на резисторі R6 яке дорівнює (0,15…0,2)Eк визначимо величину резистора:

.

Допустима потужність розсіювання на R6:

.

Приймаємо до установки резистор типу ОМЛТ–0,125–1 кОм±10%.

Визначимо опір дільників ланцюга бази.

Звичайно приймають

.

Тоді

.

.

Визначимо потужність розсіювання на резисторах R7 ,R9:

.

.

Приймаємо резистор R7 типу КИМ–0,05–2,4 кОм±10%; резистор R9 типу КИМ–0,05–6,8 кОм±10%.

Ємність конденсатора С5 визначимо з умови найменших відхилень:

.

Приймаємо до установки конденсатор типу К76-П1-63 В-3,3 мкФ.

Визначаємо опір ланцюга стабілізації:

Вхідний опір блокінг-генератора

.

Розрахунок імпульсного трансформатора поснемо з вибору коефіцієнта трансформації  який розраховується як: .

Приймаємо n0 = 2.

Ємність конденсатора С4 визначимо з умови найменший відхилень:

.

приймемо конденсатор з ємність в 10 разів більше ніж ми розрахували. Обираємо конденсатор типу К50-7-50В-56 мкФ±20%.

Визначимо індуктивність колекторної обмотки імпульсного трансформатора:

,

де  – коефіцієнт передачі за струмом транзистора VT2 16.

Обираємо тороїдальний сердечник з фериту марки 100НН1 10х6.0х2.0,

Тоді магнітна проникливість:

де  – початкова проникливість феріту марки 100НН1, =100;

 – магнітна стала феритів, ;

 – середня довжина магнітної лінії, = 34,84 мм;

S – поперечний переріз, S = 23,06 мм2.

Знаходимо кількість витків колекторної та вхідної обмоток трансформатора:

.

. Приймаємо .

.

Діод VD7 обираємо по .

Приймаємо до установки діод типу КД102Б.

2.4 Розрахунок елементів генератора пилкоподібної напруги

тиристор струм напруга генератор

Рисунок 2.5 — Схема блокінг-генератора


Для того, щоб блокінг-генератор (далі – ГПН) (рисунок 2.5) працював, необхідно, щоб час відкритого стану транзистора було набагато менше часу закритого стану, але достатнім для розрядки конденсатора С3. Для цього попередимо включення у вхідний ланцюг ГПН схеми (рисунок 2.6), яка складається з дільникового ланцюга, діоду та дільникового конденсатора. Така схема включення дозволяє знизити напругу на базі VT1 на половину амплітуди пульсуючого сигналу, що дозволить транзистору бути відкритим приблизно . Приймемо час відкритого стану , а час закритого стану.

Сконструюємо ГПН на транзисторі типу ГТ403Ж з параметрами

,

де  – напруга насичення між колектором та ємитером.

Напруга на конденсаторі С3 змінюється за законом

,

де Тз – постійна часу заряду конденсатора,

,

де Un максимальна напруга на виході ГПН.

Для его знахождення спочатку оберемо діод VD6:


.

Обираємо до установки діод типу КД202М з параметрами:

.

Так як. Uy=0…8 (B), Un розраховується як

.

Приймемо Un=9 (B), тоді:

.

Приймемо максимальний робочий струм

,

де KI – запас стійкості за струмом.

Знаходимо опір резистора R5 :

.

Т.я. напруга змінюється майже лінійно, то потужність розсіювання на резисторі R5:

.

Приймаємо до установки резистор типу С5-35 В-7.5-62 Ом.

Підставивши ці дані в формулу, знаходимо ємність конденсатора С3:

.

Приймаємо до установки конденсатор типу К50-7-50 В-380 мкФ.

Розрахуємо максимальний струм відкритого транзистора:

.

Обираємо струм дільника

,

де =20 для транзистора типу ГТ403Ж за частот, близьких до 50 (Гц).

За довідником, визначивши, що при

визначають як .

Визначаємо параметри опорів R4 та R3:

.

.

.

.

Обираємо резистори типів: R4 С2-11-0.25-3.6±1%, R3 ПЭВ-10-120±5%.

Діод VD7 обираємо за .

Обираємо діод типу КД102Б.

2.5 Розрахунок вхідного кола генератора пилкоподібної напруги

Вхідний ланцюг ГПН поданий на рисунку 2.6.

Рисунок 2.6 – Вхідний ланцюг ГПН

Ємність конденсатора С2 визначимо з умови найменших відхилень:

.

Напруга на С2: .

Приймаємо конденсатор типу К50-16-1000 мкФ.

Задамося опором . Приймемо .

Потужність на резисторі R2 .

Приймаємо резистор ОМЛТ–0,125–100 Ом±10%.

Ємність конденсатора С1 визначимо з умови найменших відхилень:

.

Наруга на С1: ,

де -кут відкритого стану транзистора.

Приймаємо до встановлення конденсатор типу К52-1-3 В-22 мкФ.

Визначимо параметри опору R1, прийнявши , знаходимо:

,

де  - максимальний струм навантаження, розраховуємо за формулою:


.

Потужність на резисторі R1:

.

Обираємо резистор типу ОМЛТ–0,125–36 Ом±5%.

Обираємо діод VD5 за параметрами:

Приймаємо до встановлення діод типу КД102Б.

2.6 Розрахунок елементів блока синхронізації

Рисунок 2.7 – Блок синхронізації

Для однофазної мостової схеми випрямлення знаходимо:


Від відносно малої потужності споживання (84 мВт) розрахунок трансформатора не виконуємо. Вторинна обмотка трансформатора може розполагатися на силовом трансформаторі.

Параметри діодів VD1-VD4:

За величиною та  обираємо до встановлення діоди типу КД105Б за наступними параметрами

Повна схема СІФУ надана на рисунку 2.8.

Рисунок 2.8 – Повна схема СІФУ

2.7 Побудова регулювальних характеристик випрямляча

Вихідні дані для розрахунку Uy = 0…8 (B).

Амплітуда пилкоподібної напругиU п max = 9 (В).

Спадання напруги на діоді VD6 .

Блокінг-генератор на транзисторі VT2 спрацьовує в той момент, коли напруга з ГПН стає більш негативною по відношенню до напруги керування, тобто

.

 – пилкоподібної напруги, змінюється за законами:

,

де - напруга на виході ГПН за відкритого транзистора VT1,

Тз – постійна часу заряду конденсатора,

.

Величина напруги керування СІФУ для різних кутів  визначається як


Таблиця 2.1

, град

0306090120150

, мс

01,683,365,046,728,4

, В

0

1.683.55.286.938.46

th:68.65pt;border-top:none;border-left: none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; padding:0cm 5.4pt 0cm 5.4pt;height:19.9pt'>3,365,046,728,4

, В

0

1.683.55.286.938.46