Граничные условия на стыке двух диэлектриков. Теорема о циркуляции
М.И. Векслер, Г.Г. Зегря
Любая граница раздела двух сред может считаться плоской на достаточно малом участке. Кроме того, в пределах достаточно малого участка поле векторов
,
,
можно считать однородным на каждой из сторон. Составляющие указанных векторов Dn, En, Pn, перпендикулярные к границе, называются нормальными, а
,
,
, параллельные границе, - тангенциальными компонентами.
На незаряженной границе двух диэлектриков нормальные и тангенциальные компоненты преобразуются следующим образом:
| (36) |
Левое соотношение получается из теоремы Гаусса, примененной к области в форме очень тонкого параллелепипеда, серединной плоскостью которого является граница раздела диэлектриков. Для получения второго соотношения привлекается теорема о циркуляции
| (37) |
Контуром служит узкая прямоугольная рамка, плоскость которой перпендикулярна к границе раздела, рассекающей рамку пополам. Левая часть равенства есть
, а правая равна нулю из электростатического уравнения Максвелла (
). Эаметим, что теорема о циркуляции - это математический закон, применимый к любому векторному полю, как и теорема Гаусса.
|

