Ссылка на архив

Возможности использования элементов теории вероятностей и статистики на уроках математики в начальной школе

Дипломная работа студента Сидорова Ивана

Белорусский государственный педагогический университет имени Максима Танка

Минск 2002

Введение

Развитие теории вероятностей с момента зарождения этой науки и до настоящего времени было несколько своеобразным. На первом этапе истории этой науки она рассматривалась как занимательный “пустячок”, как собрание курьезных задач, связанных в первую очередь с азартными играми в кости и карты. Основателями теории вероятностей были французские математики Б. Паскаль и П. Ферма, и голландский ученый Х. Гюйгенс, в ответах которых на запросы азартных игроков и переписке между собой были введены основные понятия этой теории — вероятность события и математическое ожидание.

Важнейший этап теории вероятностей связан с именем швейцарского математика Я. Бернулли. Им было дано доказательство частного случая закона больших чисел, так называемой теоремы Бернулли. С того времени теория вероятностей оформляется как математическая наука.

Строгое логическое обоснование теории вероятностей произошло в XX в. и связано с именами советских математиков С. Н. Бернштейна и А. Н. Колмогорова.

В течение последних десятилетий элементы теории вероятностей и комбинаторики то вводились разделом в курс математики общеобразовательной школы, то исключались вообще. Внимание, которое уделяется этому учебному предмету во всем мире, позволяет предположить, что концепция его введения является актуальной.

На наш взгляд, заслуживает внимания методика обучения учащихся теории вероятностей, которая основывается на понятии логико-методической модели “эксперимент”.

Эксперимент — это модель опыта с конечным множеством исходов. Как и в любой модели выделено главное: множество исходов и возможность наступления каждого из них. Некоторые эксперименты доступны детям младшего школьного возраста.

Почему же реально преподавать в начальной школе элементы теории вероятностей?

Она требует весьма немногого от технически формализованной математики: если овладеть действиями с дробями, можно уже весьма далеко продвинуться. Зачатки алгебры позволяют сформулировать теоретико-вероятностные принципы в общем виде. Теорию вероятностей можно применять также непосредственно как и элементарную арифметику, т. е. с помощью моделей, которые каждый может понять сразу.

Правильное понимание теории вероятностей является прекрасной возможностью показать школьникам процесс математизации — и это практически единственная возможность после элементарной арифметики, вслед за которой плохо усвоенная дедуктивность делает непонятными другие ветви математики.

Известны многие прекрасные опыты введения теории вероятностей уже на ранних стадиях обучения. Мы поддерживаем идею А. Энгеля пронизывать элементами теории вероятностей изучение дробей в младших классах, считая такое приближение к реальной действительности полезным. В подходе А. Энгеля удается добиться непрерывности изучения теории вероятностей. Мы полагаем, что школьник, занимавшийся ею в достаточно раннем возрасте, легче перенесет абстрактную, далекую от реальной действительности “математизацию” в старших классах. Точно также ему пойдет на пользу изучение теории вероятностей в старших классах, если уже в младших были введены некоторые элементы предмета на описательном уровне.

Учитывая требования к современному обучению и возможности 6—10 летних детей, школьная программа предусматривает сформировать у учащихся элементы математических понятий и логической структуры мышления. Это требуется от учителя, но, к сожалению, многие из них игнорируют программу. Но даже если учитель программу не игнорирует, то он до конца не понимает как преподавать элементы раздела математики, который называется математическая логика, как включать в систему обучения элементы теории вероятностей и статистики. К сожалению, мало методических пособий для учителей начальной школы, которые помогли бы справиться с такими заданиями, сделали бы обучающий процесс интересным и доступным.

Объект исследования — процесс подготовки учителя начальных классов к обучению младших школьников элементам теории вероятностей и статистики.

Предметом исследования является влияние системы задач на формирование вероятностных и статистических понятий у учеников начальной школы.

Гипотеза исследования. Мыслительные способности, как и всякие другие, можно и надо развивать. Достижению этой цели во многом может способствовать изучение элементов теории вероятностей и статистики через систему специальных задач и экспериментов.

В связи с выдвинутой гипотезой определены цель и задачи исследования.

Цель: показать методику работы использования элементов теории вероятностей и статистики на уроках математики в начальной школе; создать систему задач и упражнений, направленных на знакомство и усвоение новых знаний.

Задачи:

 показать доступность изучения элементов теории вероятностей и статистики в начальной школе;

 показать роль задач и экспериментов в усвоении элементарных знаний о теории вероятностей и статистики;

Методологической и теоретической основой являются работы отечественных и зарубежных философов, педагогов, психологов, математиков.

Базой исследования явилась гимназия № 1 г. Слонима.

Во время исследования использованы методы:

— изучение и анализ литературы по психологии, педагогике, логике, математике, учебников по математике для начальной школы под ред. А. А. Столяра;

— анализ действующей программы обучения математике в начальных классах;

— беседа;

— рассказ;

— педагогическое наблюдение за деятельностью учащихся;

— анализ письменных ответов учеников.

Замечание.

1) В первой главе мы предлагаем минимальный теоретический материал, которым должен владеть учитель начальных классов. Здесь мало методических указаний. Но даже из приводимых определений, примеров видно, что материал доступен учащимся III—IV классов, а некоторые из заданий — и более младшим школьникам.

2) Методика работы с элементами теории вероятностей рассматривается во второй главе; там же мы вернемся к ряду положений из главы I.

3) Нумерация задач, примеров — сквозная.

Глава I. Общее представление о теории вероятностей

Вероятность — характеристика степени появления некоторого события при тех или иных определенных условиях.

Классическая теория вероятностей рассматривает вероятность как отношение числа благоприятствующих случаев ко всем возможным. При этом предполагается, что все рассмотренные случаи являются равновозможными, равновероятными. Так, если мы берем идеально изготовленную шестигранную игральную кость, то у нас нет оснований считать, что она на какую-то из граней будет выпадать чаще, чем на другую; более того, есть все основания для того, чтобы считать равновероятным выпадение ее на каждую из граней. Поэтому при бросании такой кости выпадение каждой из них можно ожидать с вероятностью, равной 1/6. В классической теории вероятностей мы имеем дело со случаями, когда вычисленная чисто теоретически вероятность того или иного события подтверждается в процессе опытной проверки. Такая ситуация, основывающаяся на симметричности исходов опыта, сравнительно редко встречается при исследовании реальных событий в науке и практике. Теория частотной, или статистической, вероятности, у истоков которой стояли Р. Мизес(1) и Г. Рейхенбах(2) , преодолевает указанную ограниченность классической теории.

Ключевым в частотной теории является понятие относительной частоты. Это отношение числа появлений изучаемого события в серии испытаний в данных условиях к числу всех испытаний, в которых это событие могло бы появиться при тех же условиях. Частотная теория позволяет по результатам относительной частоты изучаемых массовых случайных событий судить об их вероятности. Применение математики к изучению событий такого характера опирается на то, что во многих случаях при многократном повторении испытаний в примерно равных условиях частота появления результата остается примерно одинаковой. Результат же представляет собой отношение числа опытов, в которых он имел место, к общему числу производимых опытов. Так частота попадания в цель для данного стрелка в одних и тех же условиях при значительном числе испытаний остается почти одной и той же. Процент бракованных изделий в данном ряду испытаний в одном и том же производстве при одинаковых условиях примерно один и тот же.

В последнее время разрабатывается логическая (индуктивная) теория вероятности, в которой изучается отношение между посылками и заключением в правдоподобных умозаключениях. Логическая вероятность характеризует разумную степень веры в появление некоторого события в условиях некоторой неопределенности. Логическая вероятность используется в вероятностной и индуктивной логике (4).

“Математика случая” — так еще в XVII в. назвал теорию вероятностей один из ее основателей, французский ученый Блез Паскаль(3) .

— Случай? А зачем его изучать? — спросите вы.

Оказывается, еще в древности люди заметили, что случайное событие — вовсе не исключение в жизни, а правило. Это явилось объективной предпосылкой для возникновения науки о случайных явлениях. Знать законы случая необходимо. Вот пример.

Во всех крупных населенных пунктах имеются станции скорой медицинской помощи. Нет возможности заранее предсказать моменты, когда потребуется оказать помощь внезапно заболевшим людям. Как много в течение заданного времени будет вызовов к таким больным? Как долго придется врачу задержаться у больного? Сколько врачей и машин необходимо иметь во время дежурства, чтобы, с одной стороны, больные не слишком долго ожидали помощи, а с другой — не наблюдалось бы слишком непродуктивного использования врачебного персонала? Мы сталкиваемся с типичной ситуацией, в которой случайными являются моменты вызовов, длительность пребывания врача у больного, длительность проезда машины от пункта “Скорой помощи” до дома больного… (Гнеденко)

Как видим, неотложная помощь зависит от многих случайных событий. È чтобы помощь была действительно неотложной, надо уметь учитывать все эти случайности.

Можно привести и более обыденные, более примитивные, если угодно, примеры. Под потолком висит лампочка — вы не знаете, когда она перегорит. Будет ли завтра снег, никому наверняка неизвестно, даже бюро погоды ошибается. Учитель не знает, сколько ошибок сделает школьник в диктанте.

Теория вероятностей — математическая наука, которая как раз и изучает математические модели случайных явлений, с ее помощью вычисляют вероятности наступления определенных событий (5). Рассмотрим решения нескольких простых задач этой сложной науки.

I. 1. Как поймать случай?

Возьмите 7 одинаковых шариков от настольного тенниса. На каждом напишите номер — 1, 2, … , 7. Три из них (1, 2, 3) пометьте чернилами — это будут “черные шары”, а остальные — “белые”. Теперь возьмите мешочек или ящичек — это будет ваша “урна” — и положите в нее шары.

Начинаем опыты.

Шарики надо перемешать и вытащить один. Запишите, какого он цвета, и положите шарик обратно. Это первый опыт. Так можно делать много раз подряд. За полчаса можно провести более ста опытов.

Мы хотим предсказать, сколько раз из 100 будет вынут черный шар. Какова его доля во всех опытах? Естественно, каждый раз результат зависит от случая — может попасться черный шар, а может и белый. Но при большом числе опытов примерную долю черных шаров можно предсказать!

Каждый раз вы вынимали из урны либо первый шар, либо второй, … , либо седьмой — всего семь возможных исходов каждого опыта. Шары тщательно перемешаны, на ощупь различить их нельзя, у всех одинаковые шансы быть вынутыми. Математики говорят: все семь исходов равновозможны.

Теперь понятно, что каждый шар может появиться в 1/7 части всех опытов, и чем больше раз вы вынимаете шары, тем ближе к 1/7 доля любого из семи исходов. Конечно теоретически можно допустить, что все сто раз вы вынимаете, например, первый шар. Но это совершенно исключительный случай, но мы говорим сейчас о средних результатах.

Что же можно сказать о черном цвете? Он может в каждом опыте появиться одним из трех способов, в трех исходах из семи (ведь у нас три черных шара). Эти исходы называются благоприятными для появления черного шара. Итак, всех опытов — 7, благоприятных исходов — 3, следовательно, в среднем в 3/7 всех опытов вынут черный шар. И чем больше опытов, тем ближе его доля к 3/7. Это и есть вероятность появления черного шара.

Этот пример иллюстрирует формулу классической теории вероятностей:

Вероятность события=

Число благоприятных исходов
Число всех равновозможных исходов

Эта формула получена с помощью рассуждений. Но соответствуют ли рассуждения действительности? Формулу проверяли ученые на многих опытах, и всегда она получала подтверждение. Доля опытов, в которых событие осуществлялось, была близка к расчетной. Этой формулой пользуются, когда исходы опыта равновозможны и надо только вычислить вероятность.

Опытом или испытанием называют осуществление определенного комплекса условий или действий, при которых происходит соответствующее явление. Возможный результат опыта называют событием. Например, опытом является подбрасывание монеты, а событиями — “герб” или “цифра” на верхней стороне после падения монеты. Опытами являются стрельба по мишени, извлечение шара из ящика, бросание игрального кубика и т. д.

I. 2. Классификация событий

Достоверным называют событие, которое обязательно произойдет в данном опыте. Например, если в ящике находятся только красные шары, то событие из ящика извлечен красный шар является достоверным (в ящике нет шаров другого цвета).

Невозможным называется событие, которое не может произойти в этом опыте. В нашем примере таковым является событие из ящика извлечен синий шар (таких шаров просто нет).

Случайным называется событие, если оно может произойти, а может и не произойти в данном опыте. Если бы в урне находились красные и синие шары, то событие из ящика извлечен красный шар — случайное (ведь мы можем и не извлечь красный шар в данном испытании). Случайными событиями являются “герб” и цифра на верхней стороне монеты при ее подбрасывании, выигрыш по билету лотереи и т. п.

Два события называются совместными в данном опыте, если появление одного из них не исключает появления другого в этом же опыте. Так, при подбрасывании двух монет события A — “герб на верхней стороне первой монеты” и B — “цифра на верхней стороне второй монеты являются совместными.

Равновозможными считают события, если нет оснований полагать, что одно событие является более возможным, чем другие. Например, при подбрасывании монеты событие K (появление цифры) и событие L (появление герба) равновозможными. Такими же являются появления любой из шести граней при подбрасывании игрального кубика.

Каждое событие, которое может наступить в итоге опыта, называется элементарным исходом (элементарным событием или шансом). Например, события A1, A2, A3, A4, A5, A6 — элементарные исходы при подбрасывании кубика.

Элементарные исходы, при которых данное событие наступает, называются благоприятствующими этому событию, или благоприятными шансами. Например, при подбрасывании игрального кубика элементарные исходы A2, A4, A6 являются благоприятствующими событию “выпало четное число очков”.

Пример 1. Подбрасываются два игральных кубика, подсчитываются суммы выпавших очков (суммы числа очков на верхних гранях обоих кубиков). Сумма выпавших очков на двух кубиках может меняться от 2 до 12. Записать полную группу событий в этом опыте.

Решение. Полную группу событий образуют равновозможные элементарные исходы (k; m), k, m = 1, 2, 3, 4, 5, 6, представленные в таблице. Элементарный исход означает, что на первом кубике выпало k очков, а на втором m очков. Например (3, 4) — на первом кубике 3 очка, на втором — 4 очка.

Òàáë. A

(1, 1)(2,1)(3, 1)(4, 1)(5, 1)(6, 1)
(1, 2)(2,2)(3, 2)(4, 2)(5, 2)(6, 2)
(1, 3)(2,3)(3, 3)(4, 3)(5, 3)(6, 3)
(1, 4)(2,4)(3, 4)(4, 4)(5, 4)(6, 4)
(1, 5)(2,5)(3, 5)(4, 5)(5, 5)(6, 5)
(1, 6)(2,6)(3, 6)(4, 6)(5, 6)(6, 6)

Пример 2. Сколько элементарных исходов благоприятствует событию “на обоих кубиках выпало одинаковое число очков” при подбрасывании двух игральных кубиков.

Решение. Этому событию благоприятствуют 6 элементарных исходов (см. табл. 1): (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6).

Пример 3. Подбрасывается два игральных кубика. Какому событию благоприятствует больше элементарных исходов: “сумма выпавших очков равна 7”, “сумма выпавших очков равна 8”?

Решение. Событию “сумма выпавших очков равна 7” благоприятствуют 6 исходов (в табл. 1 выделены цветом). Событию “сумма выпавших очков равна 8” благоприятствует 5 исходов: (2, 6), (3, 5), (4, 4), (5, 3), (6, 2). Ответ ясен.

Кстати говоря, можно предложить учащимся и другое задание: подсчитать, сколько элементарных исходов благоприятствует событиям “сумма очков на кубиках равна 2”, “сумма очков на кубиках равна 3” и т. д., и эти результаты отметить на координатной плоскости, с которой учащиеся начальных классов знакомы.

Ðèñ. A

Пример 4. Подбрасывается три игральных кубика, подсчитываются суммы очков, выпавших на них. Сколькими способами можно получить в сумме 5 очков; 6 очков?

Решение. Получить в сумме 5 очков можно шестью способами: (1; 1; 3)(4) , (1; 3; 1), (3; 1; 1), (1; 2; 2), (2; 1; 2), (2; 2; 1). Получить в сумме 6 очков можно десятью способами (1; 1; 4), (1; 4; 1), (4; 1; 1), (1; 2; 3), (1; 3; 2), (2; 1; 3), (2; 3; 1), (3; 1; 2), (3; 2; 1), (2; 2; 2).

I. 3. Классическое определение вероятности

Вероятностью события называется отношение числа элементарных исходов, благоприятствующих данному событию, к числу всех равновозможных исходов опыта, в котором может появиться это событие. Вероятность события A обозначают через P(A) (здесь P — первая буква французского слова probabilite — вероятность):

,

ãäå m — число элементарных исходов, благоприятствующих событию A; n — число всех равновозможных элементарных исходов опыта, образующих полную группу событий.

Это определение вероятности называют классическим. Оно возникло на начальном этапе развития теории вероятностей.

Пример 5. В урне 10 одинаковых по размерам и весу шаров, из которых 4 красных и 6 голубых. Из урны извлекается 1 шар. Какова вероятность того, что извлеченный шар окажется голубым?

Решение. Событие “извлеченный шар оказался голубым” обозначим буквой A. Данное испытание имеет 10 равновозможных элементарных исходов, из которых 6 благоприятствуют событию A. В соответствии с формулой получаем

.

Пример 6. Все натуральные числа от 1 до 30 записаны на одинаковых карточках и помещены в урну. После тщательного перемешивания из урны извлекается одна карточка. Какова вероятность того, что число на взятой карточке окажется делящимся на 5?

Решение. Обозначим через A событие “число на взятой карточке кратно 5”. В данном испытании имеется 30 равновозможных элементарных исходов, из которых событию A благоприятствуют 6 исходов (числа 5, 10, 15, 20, 25, 30). Следовательно,

.

Пример 7. Какова вероятность того, что в наудачу выбранном двузначном числе цифры одинаковы?

Решение. Двузначными числами являются числа от 10 до 99; всего таких чисел 90. Одинаковые цифры имеют 9 чисел (11, 22, 33, 44, 55, 66, 77, 88, 99). В данном случае m = 9, n = 90:

,

где A — событие “число с одинаковыми цифрами”.

Пример 8. Подбрасывается два игральных кубика, отмечается число очков на верхней грани каждого кубика. Найти вероятность того, что на обоих кубиках выпало одинаковое число очков.

Решение. Обозначим это событие буквой A. Событию A благоприятствуют 6 элементарных исходов: (1; 1), (2; 2), (3; 3), (4; 4), (5; 5), (6; 6). Всего равновозможных элементарных исходов, образующих полную группу событий, в данном случае n = 62 = 36 (см. табл. 1). Значит, искомая вероятность

.

Пример 9. Подбрасываются два игральных кубика, подсчитывается сумма очков на верхних гранях. Что вероятнее — получить в сумме 7 или 8?

Решение. Обозначим события: A — “выпало 7 очков”, B — “выпало 8 очков”. Событию A благоприятствуют 6 элементарных исходов, а событию B — 5 исходов (см. табл. 1, рис. 1). Всех равновозможных элементарных исходов — 36, что видно из той же таблицы. Значит:

, .

Итак, , т. е. получить в сумме 7 очков — более вероятное событие, чем получить в сумме 8 очков (14, 98).

Задача 1(5) . В урне лежат 5 красных, 12 белых и 9 синих шаров. Найти вероятность того, что: а) вынут белый шар; б) вынут красный шар; в) вынут синий шар; г) вынут цветной шар.

Обсуждение. В задаче имеется 5 + 12 + 9 = 26 равновозможных исходов. Поэтому вероятности равны:

а) ; б) ; в) .

На случае г) остановимся подробнее. Наверное, цветным шаром можно назвать красный или синий шар. Вынуть цветной шар можно одним из 5 + 9 = 14 способов. Таким образом, цветной шар можно достать способами.

Задача 2 (двойное испытание). В урне 3 черных и 4 белых шара. Вы вынимаете один из них, кладете обратно, перемешиваете и вынимаете другой. Возможно одно из трех: 1) оба шара черные, 2) оба шара белые, 3) шары различных цветов. Каковы вероятности этих событий?

Обсуждение. Условно черным шарам дадим номера 1, 2, 3; белым — 4, 5, 6, 7. Пары букв показывают цвет двух вынутых шаров (левая буква относится к первому выниманию, правая — ко второму). Составим таблицу.

Òàáë. B

1(ч)2(ч)3(ч)4(б)5(б)6(б)7(б)
1(ч)чччччччбчбчбчб
2(ч)чччччччбчбчбчб
3(ч)чччччччбчбчбчб
4(б)бчбчбчбббббббб
5(б)бчбчбчбббббббб
6(б)бчбчбчбббббббб
7(б)бчбчбчбббббббб

Нетрудно подсчитать, что равновозможных исходов 49. Вероятность появления двух черных шаров равна , двух белых — , шаров разных цветов — .

Задача 3. Найдите вероятности того, что при двойном испытании как в предыдущей задаче: а) вынут по крайней мере один черный шар; б) вынут хотя бы один белый шар; в) первым вынут черный шар; г) последним вынут белый шар.

Обсуждение. Для решения воспользуемся таблицей из предыдущей задачи. Вероятности равны: а) ; б) ; в) ; г) .

I. 4. О смысле формулы вероятности события

Мы вывели эту формулу с помощью некоторых утверждений. Можно ли утверждать, что мы ее доказали, как доказывают теоремы? Нет, конечно. Мы построили модель реального явления (вынимание шаров из урны). Модель подтверждается фактами и экспериментами. А с математической точки зрения формула есть определение вероятности. И эта формула связывает модель с реальным миром.

Задача 4. Брошены независимо друг от друга две правильные игральные кости. Найти вероятности того, что сумма очков на верхних гранях: а) меньше 9; б) больше 7; в) делится на 3; г) четна.

Обсуждение. При бросании двух костей имеется 36 равновозможных исходов, поскольку имеется 6´6 = 36 пар, в которых каждый элемент — целое число от 1 до 6. Составим таблицу (табл. 3), в которой слева число очков на первой кости, вверху — на второй, а на пересечении строки и столбца стоит их сумма.

Òàáë. C

123456
1234567
2345678
3456789
45678910
567891011
6789101112

Непосредственный подсчет показывает: вероятность того, что сумма очков на верхних гранях меньше 9, равна ; что эта сумма больше 7 — ; что она делится на 3: ; наконец, что она четна, -2613610.gif">; что эта сумма больше 7 — ; что она делится на 3: ; наконец, что она четна,