10. В чем заключаются  основные   утверждения   физики   элементарных частиц   и квантового вакуума?

Элементарные частицы — мельчайшие известные частицы материи. Представление об элементарных частицах отражает тот уровень познания строения материи, который достигнут современной наукой. Характерная особенность элементарных частиц — способность к взаимным превращениям, что не позволяет рассматривать их как простейшие, неизменные «кирпичики мироздания», подобные атомам Демокрита.

Все элементарные частицы, кроме нейтральных, имеют свои античастицы. При столкновении частицы и античастицы происходит их аннигиляция, при которой образуются другие элементарные частицы или фотоны. Например, в результате аннигиляции пары электрон-позитрон рождаются фотоны.

Специфическая характеристика элементарных частиц — четность — квантовое число, определяющее симметрию волновой функции относительно зеркального отражения. Если при зеркальном отражении волновая функция частицы не меняет знака, то ее четность положительна, если меняет знак — отрицательна. Эта квантово-механическая характеристика подчиняется закону сохранения четности: при всех превращениях системы частиц четность состояния не изменяется.

Сохранение четности связано со свойством зеркальной симметрии пространства и указывает на инвариантность законов природы при замене правого левым и наоборот.

Число обнаруженных элементарных частиц со временем увеличивается. В частности, сравнительно недавно сообщалось о том, что зарегистрирована еще одна частица. Вместе с обнаружением новых элементарных частиц продолжается поиск фундаментальных частиц, которые могли бы служить составными «кирпичиками» для построения известных частиц. Гипотеза о существовании подобного рода частиц, названных кварками, была высказана в 1964 г.

Пространство содержит в себе богатый ассортимент всех известных частиц и что эти частицы переводятся в «детектируемое» состояние с помощью электромагнитного излучения (света). Таким образом, можно сказать, что физический вакуум является физическим фактором, участвующим в физических процессах. Вакуум содержит невообразимо плотно упакованный ассортимент всех частиц, существующих в природе. Вопрос о структуре вакуума, которая при определенных условиях проявляется в виде частиц, в настоящее время не решен и составляет содержание одного из важнейших научных направлений в теории элементарных частиц.

12.      Какие      идеи      квантовой     статистической      физики     заложены      в современных полупроводниковых технологиях?

Квантово-механическая концепция, описывающая, казалось бы, загадочный и далекий от обычных представлений микромир, все активнее вторгается в практические сферы человеческой деятельности. Появляется все больше приборов, основанных на квантово-механических принципах — от квантовых генераторов (лазеров, мазеров и др.) до многообразных микроэлектронных устройств. Видимо, пришел черед и вычислительной техники — предполагается, что компьютеры, построенные на квантовых вычислительных элементах, совершат переворот в разработке современных мощных вычислительных средств. Вполне возможно, что через какое-то время квантовый компьютер станет инструментом столь же привычным, как сегодня обычный компьютер.

13.  Что такое энтропный принцип в теории эволюции Вселенной?

Материи изначально присуща тенденция к разрушению упорядоченности и возврату к исходному хаосу. Разрушительную тенденцию материи наиболее полно отражают статистическая механика и термодинамика, описывающие свойства изолированных (замкнутых) систем, т. е. систем, не обменивающихся ни энергией, ни веществом с окружающей средой. При этом особая роль принадлежит второму началу термодинамики, определяющему необратимость процессов преобразования энергии в замкнутой системе. Такие процессы рано или поздно приводят систему к ее самому простому состоянию — термодинамическому равновесию, эквивалентному хаосу — состоянию без какой-либо упорядоченности. В прошлом обсуждалась возможность приложения второго начала термодинамики к Вселенной как замкнутой системе и при этом сделан вывод о деградации Вселенной — ее тепловой смерти.



4.Сформулируйте уравнения Максвелла.

Согласно закону Фарадея, любое изменение магнитного потока приводит к возникновению электромагнитной индукции, характеризующейся электродвижущей силой (ЭДС). Электромагнитная индукция возникает только тогда, когда на носителей электрического тока действуют сторонние силы, т. е. силы не электростатического происхождения. Какова же природа сторонних сил? Опыт показывает, что сторонние силы не связаны ни с тепловыми, ни с химическими процессами; их возникновение нельзя объяснить наличием сил Лоренца. В этой связи Дж. Максвелл предположил: всякое переменное магнитное поле возбуждает в окружающем пространстве электрическое поле, обусловливающее индукционный ток в контуре. Оказывается, контур, в котором возникает ЭДС, играет второстепенную роль, выполняя функцию своеобразного «прибора», обнаруживающего это поле. Электрическое поле, возбуждаемое магнитным полем, как и само магнитное поле, является вихревым.

Согласно Максвеллу, если переменное магнитное поле возбуждает в пространстве вихревое электрическое поле, то возможно и обратное: изменение электрического поля должно вызывать появление в окружающем пространстве вихревого магнитного поля. Для установления количественных соотношений между изменяющимся электрическим полем и вызываемым им магнитным полем Максвелл ввел в рассмотрение так называемый ток смещения, обладающий способностью создавать в окружающем пространстве магнитное поле. Ток смещения в вакууме не связан с движением зарядов, а обусловливается только изменением электрического поля во времени и вместе с тем возбуждает магнитное поле — в этом заключается принципиально новое утверждение Максвелла.

Из уравнений Максвелла следует, что источниками электрического поля могут быть электрические заряды и изменяющиеся во времени магнитные поля, а магнитные поля могут возбуждаться движущимися электрическими зарядами (электрическими токами) и переменными электрическими полями. В природе существуют электрические заряды, но нет зарядов магнитных.

В стационарном случае, когда электрическое и магнитное поля не изменяются во времени, источником электрического поля могут быть только электрические заряды, а источником магнитного — только токи проводимости. При этом электрическое и магнитное поля независимы друг от друга, что и позволяет изучать отдельно постоянные электрические и магнитные поля.

Уравнения Максвелла — это общие уравнения для электрических и магнитных полей. В электромагнетизме они играют такую же роль, как законы Ньютона в механике. Из уравнений Максвелла следует, что переменное магнитное поле всегда связано с порождаемым им электрическим полем, а переменное электрическое поле — с порождаемым им магнитным, т. е. электрическое и магнитное поля неразрывно взаимосвязаны и образуют единое электромагнитное поле.

К главе 3

1.  На базе каких химических свойств биологических молекул (назовите виды этих молекул) осуществляется самовоспроизведение биологических структур и биологическое узнавание?    Попробуйте    обосновать    гипотезу    о    физико-химических    этапах эволюционного процесса на пути возникновения жизни на Земле.

Хранение и передачу наследственной информации в живых организмах обеспечивают природные органические полимеры — нуклеиновые кислоты. Различают их две разновидности — дезоксирибонуклеиновую кислоту (ДНК) и рибонуклеиновую кислоту (РНК). В состав ДНК входят азотистые основания (аденин (А), гуанин (Г), тимин (Т), цитозин (Ц)), дезоксирибоза (С5Н10О4) и остаток фосфорной кислоты. В РНК вместо тимина содержится урацил (У), а вместо дезоксирибозы — рибоза (С5Н,0О5). Мономерами ДНК и РНК являются нуклеотиды, которые состоят из азотистых, пуриновых