СОДЕРЖАНИЕ




Введение        2

1        Основы кибернетики        3

2        Основы синергетики        10

3        Человек и человеческое сознание        17

4        Управление и регулирование в живых системах        21

5        Практическая часть        27

Заключение        35

Список использованной литературы        37

Введение


В течение последних трех столетий естествознание развивалось невероятно быстро и динамично. Горизонт научного познания расширился до поистине фантастических размеров. Значительно возросла роль науки в современной обществе. На основе науки рационализируются по сути все формы общественной жизни. Как никогда близки наука и техника. Наука стала непосредственной производительной силой общества. По отношению к практике она выполняет непосредственно программирующую роль. Новые информационные технологии и средства вычислительной техники, достижения генной инженерии и биотехнологии обещают в очередной раз коренным образом изменить материальную цивилизацию, уклад нашей жизни. Под влиянием науки (в том числе) возрастает личностное начало, роль человеческого фактора во всех формах деятельности.

Вместе с тем, радикально изменяется и сама система научного познания. Размываются четкие границы между практической и познавательной деятельностью. В системе научного знания интенсивно проходят процессы дифференциации и интеграции знания, развиваются комплексные и междисциплинарные исследования, новые способы и методы познания, методологические установки, появляются новые элементы картины мира, выделяются новые, более сложные типы объектов познания, характеризующиеся историзмом, универсальностью, сложностью организации, которые раньше не поддавались теоретическому (математическому) моделированию. Одно из таких новых направлений в современном естествознании представлено синергетикой.


1 Основы кибернетики


Изучая закономерности сложнейшего динамического равновесия в биосфере, В.И.Вернадский утверждал, что минеральное, растительное, животное царство, царство человека и водные ресурсы теснейшим образом взаимосвязаны. Эту совокупность взаимосвязей Вернадский назвал ноосферой. Он понял, что в природе реально существует не только четко отлаженный круговорот воды и различных химических элементов, но еще и нечто большее, стоящее над этими процессами, и позволяющее столь сложной и гигантской природной машине действовать слаженно.

Изучение механизмов обратной связи натолкнуло Н.Винера и Д.Бигелау на мысль: если в технических системах из-за неисправности обратной связи (реверберации обратной связи) происходит нарушение деятельности всей системы, то как будут вести себя живые организмы в аналогичном случае? Известно, например, что при реверберации обратной связи в управлении рулем океанского корабля руль перестает направлять движение корабля по заданному курсу. В ответ на координационные команды управляющего задающего механизма руль отклоняется то с избытком, то с недостатком как вправо, так и влево, совершая колебания подобно флагу на ветру. Оказалось, что аналогичные явления имеют место и в поведении живого организма при нарушениях обратной связи. Например при повреждении мозжечка, являющегося одной из важнейших частей обратной связи, происходят сходные явления. Больной, пытаясь выполнить определенное действие, допустим поднять карандаш с пола, не может этого сделать; его рука проскакивает мимо цели сначала, предположим, вправо, потом влево и т. д. (чрезмерная обратная связь), а затем начинает совершать не подчиняющиеся контролю колебания.

Проблема аналогии в функционировании биологических и технических систем управления, возникшая в результате создания новой автоматической системы, что вызвало большой интерес ученых США, имеющих различные специальности: физиков, математиков, инженеров по радиоэлектронике, физиологов, психиатров, специалистов по работе головного мозга, медиков и др. Группа ученых, непосредственно работавшая над этой проблемой, пришла к заключению, что у биологических и технических систем существует некоторое принципиальное единство в их функционировании.

Все это было оформлено в виде общей теории об управлении и связи в живых организмах и механических (неживых) управляемых системах и привело к формированию кибернетики - науки о связях, управлении и организации в объектах любой природы.

Поскольку кибернетика родилась на стыке ряда наук (физики, математики, естественных наук, социально-экономических наук, технических наук, медицины, лингвистики и др.), то ее развитие неизбежно стимулировало развитие и этих наук. Однако, тенденция дифференциации научного знания пересилила и содержание кибернетики, пытавшейся создать "технический" аналог философии. Кибернетику стали делить на самостоятельные разделы (в частности, теорию автоматического регулирования и управления, теорию случайных процессов в автоматических системах, теорию о нелинейных автоматических системах, теорию оптимальных и самонастраивающихся систем и др.). Это свидетельствует о том, что на тот период не было достигнуто осознание неразрывного единства подходов кибернетики. Иногда даже утверждали, что кибернетика является собирательной наукой, состоящей из отдельных самостоятельных кибернетических дисциплин. Так, например, в Философской энциклопедии кибернетика разделена на следующие кибернетические науки: на 1) теоретическую кибернетику