Виды проектирования. Особенности использования.

5.ПринципыИподходыКпроектированию.Проектирование сложных объектов основано на применении идей и принципов, изложенных в ряде теорий и подходов. Наиболее общим подходом являетсясистемный подход, идеями которого пронизаны различные методики проектирования сложных систем/Для специалиста в области системотехники идеи и принципы системного подхода являются очевидными и естественными, однако их соблюдение и реализация зачастую сопряжены с определенными трудностями, обусловливаемыми особенностями проектирования. Как и большинство взрослых образованных людей, правильно использующих родной язык без привлечения правил грамматики, инженеры используют системный подход без обращения к пособиям по системному анализу. Однако интуитивный подход без применения правил системного анализа может оказаться недостаточным для решения все более усложняющихся задач инженерной деятельности.Основной общий принцип системного подхода заключается в рассмотрении частей исследуемого явления или сложной системы с учетом их взаимодействия. Системный подход включает в себя выявление структуры системы, типизацию связей, определение атрибутов, анализ влияния внешней среды, формирование модели системы, исследование модели и возможно оптимизацию ее структуры и функционирования.Системный подход является базой для обобщающей дисциплины "теория систем" (другое используемое название — "системный анализ"). Теория систем — дисциплина, в которой конкретизируются положения системного подхода; она посвящена исследованию и проектированию сложных экономических, социальных, технических систем, чаще всего слабоструктурированных. Характерными примерами таких систем являются производственные системы. При проектировании систем цели достигаются в многошаговых процессах принятия решений. Методы принятия решений часто выделяют в самостоятельную дисциплину, называемую "Теория принятия решений".В технике дисциплину, в которой исследуются сложные технические системы, их проектирование, и аналогичную теории систем, чаще называютсистемотехникой. Предметом системотехники являются, во-первых, организация процесса создания, использования и развития технических систем, во-вторых, методы и принципы их проектирования и исследования. В системотехнике важно уметь сформулировать цели системы и организовать ее рассмотрение с позиций поставленных целей. Тогда можно отбросить лишние и малозначимые части при проектировании и моделировании, перейти к постановке оптимизационных задач.Системы автоматизированного проектирования и управления относятся к числу наиболее сложных современных искусственных систем. Их проектирование и сопровождение невозможны без системного подхода. Поэтому идеи и положения системотехники входят составной частью в дисциплины, посвященные изучению современных автоматизированных систем и технологий их создания и применения.Интерпретация и конкретизация системного подхода имеют место в ряде известных подходов с другими названиями, которые также можно рассматривать как компоненты системотехники. Таковы структурный, блочно-иерархический, объектно-ориентированный подходы.При структурном подходе, как разновидности системного, требуется синтезировать варианты системы из компонентов (блоков) и оценивать варианты при их частичном переборе с предварительным прогнозированием характеристик компонентов.Блочно-иерархический подход к проектированию использует идеи декомпозиции сложных описаний объектов и соответственно средств их создания на иерархические уровни и аспекты, вводит понятие стиля проектирования (восходящее и нисходящее), устанавливает связь между параметрами соседних иерархических уровней.Ряд важных структурных принципов, используемых при разработке информационных систем и прежде всего их программного обеспечения (ПО), выражен в подходе, называемом объектно-ориентированным проектированием (ООП). Такой подход имеет следующие преимущества в решении проблем управления сложностью и интеграции ПО:вносит в модели приложений большую структурную определенность, распределяя представленные в приложении данные и процедуры между классами объектов;сокращает объем спецификаций, благодаря введению в описания иерархии объектов и отношений наследования между свойствами объектов разных уровней иерархии;уменьшает вероятностьискажения данных вследствие ошибочных действий за счет ограничения доступа к определенным категориям данных в объектах.Описание в каждом классе объектов допустимых обращений к ним и принятых форматов сообщений облегчает согласование и интеграцию ПО.Для всех подходов к проектированию сложных систем характерны также следующие особенности:Структуризация процесса проектирования, выражаемая декомпозицией проектных задач и документации, выделением стадий, этапов, проектных процедур. Эта структуризация является сущностью блочно-иерархического подхода к проектированию.Итерационный характер проектирования.Типизация и унификация проектных решений и средств проектирования.В теории систем и системотехнике введен ряд терминов, среди них к базовым нужно отнести следующие понятия:Система — множество элементов, находящихся в отношениях и связях между собой.Элемент — такая часть системы, представление о которой нецелесообразно подвергать при проектировании дальнейшему членению.Сложная система — система, характеризуемая большим числом элементов и, что наиболее важно, большим числом взаимосвязей элементов. Сложность системы определяется также видом взаимосвязей элементов, свойствами целенаправленности, целостности, членимости, иерархичности, многоаспектности. Очевидно, что современные автоматизированные информационные системы и, в частности, системы автоматизированного проектирования, являются сложными в силу наличия у них перечисленных свойств и признаков.Подсистема — часть системы (подмножество элементов и их взаимосвязей), которая имеет свойства системы.Надсистема — система, по отношению к которой рассматриваемая система является подсистемой.Структура — отображение совокупности элементов системы и их взаимосвязей; понятие структуры отличается от понятия самой системы также тем, что при описании структуры принимают во внимание лишь типы элементов и связей без конкретизации значений их параметров.Параметр — величина, выражающая свойство или системы, или ее части, или влияющей на систему среды. Обычно в моделях систем в качестве параметров рассматривают величины, не изменяющиеся в процессе исследования системы. Параметры подразделяют на внешние, внутренние и выходные, выражающие свойства элементов системы, самой системы,внешнейсредысоответственно. Векторы внутренних параметров, выходных параметров и внешних параметровобозначаются соответственно.Фазовая переменная — величина, характеризующая энергетическое или информационное наполнение элемента или подсистемы.Состояние — совокупность значений фазовых переменных, зафиксированных в одной временной точке процесса функционирования.Поведение (динамика) системы — изменение состояния системы в процессе функционирования.Система без последействия — ее поведение при определяется заданием состояния в момент и вектором внешних воздействий. В системах с последействием, кроме того, нужно знать предысторию поведения, т.е. состояния системы в моменты, предшествующие .Вектор переменных , характеризующих состояние (вектор переменных состояния) — неизбыточное множество фазовых переменных, задание значений которых в некоторый момент времени полностью определяет поведение системы в дальнейшем (в автономных системах без последействия).Пространство состояний — множество возможных значений вектора переменных состояния.Фазовая траектория —представлениепроцесса (зависимости ) в виде последовательности точек в пространстве состояний.К характеристикам сложных систем часто относят следующие понятия:Целенаправленность — свойство искусственной системы, выражающее назначение системы. Это свойство необходимо для оценки эффективности вариантов системы.Целостность — свойство системы, характеризующее взаимосвязанность элементов и наличие зависимости выходных параметров от параметров элементов, при этом большинство выходных параметров не является простым повторением или суммой параметров элементов.Иерархичность — свойство сложной системы, выражающее возможность и целесообразность ее иерархического описания, т.е. представления в виде нескольких уровней, между компонентами которых имеются отношения целое-часть.Составными частями системотехники являются следующие основные разделы:иерархическая структура систем, организация их проектирования;анализ и моделирование систем;синтез и оптимизация систем.Моделирование имеет две четко различимые задачи:создание моделей сложных систем (в англоязычном написании — modeling);анализ свойств систем на основе исследования их моделей (simulation)/Синтез также подразделяют на две задачи:синтез структуры проектируемых систем (структурный синтез);выбор численных значений параметров элементов систем (параметрический синтез).Эти задачи относятся к области принятия проектных решений.Моделирование и оптимизацию желательно выполнять с учетом статистической природы систем. Детерминированность — лишь частный случай. При проектировании характерны нехватка достоверных исходных данных, неопределенность условий принятия решений. Учет статистического характера данных при моделировании в значительной мере основан на методе статистических испытаний (методе Монте-Карло), а принятие решений — на использовании нечетких множеств, экспертных систем, эволюционных вычислений.Пример 1Компьютер является сложной системой в силу наличия у него большого числа элементов, разнообразных связей между элементами и подсистемами, свойств целенаправленности, целостности, иерархичности. К подсистемам компьютера относятся процессор (процессоры), оперативная память, кэш-память, шины, устройства ввода-вывода. В качестве надсистемы могут выступать вычислительная сеть, автоматизированная и (или) организационная система, к которым принадлежит компьютер. Внутренние параметры — времена выполнения арифметических операций, чтения (записи) в накопителях, пропускная способность шин и др. Выходные параметры — производительность компьютера, емкость оперативной и внешней памяти, себестоимость, время наработки на отказ и др. Внешние параметры — напряжение питания сети и его стабильность, температура окружающей среды и др.


6. Структура процесса проектирования.

Проектированиеэто комплекс работ с целью получения описаний нового или модернизируемого технического объекта, достаточных для реализации или изготовления объекта в заданных условиях. Объектами проектирования могут быть изделия (например, обрабатывающий центр, двигатель внутреннего сгорания, ЭВМ) или процессы (например, технологические, вычислительные). Комплекс проектных работ включает в себя теоретические и экспериментальные исследования, расчеты, конструирование.Проектирование, осуществляемое человеком при взаимодействии с ЭВМ, называют автоматизированным. Степень автоматизации может быть различной и оценивается долей  проектных работ, выполняемых на ЭВМ без участия человека. При =0 проектирование называют неавтоматизированным, при =1—автоматическим.Автоматизированное проектирование осуществляется в рамках САПР. В соответствии с ГОСТом система автоматизированного проектирования—это организационно-техническая система, состоящая из комплекса средств автоматизации проектирования (АП), взаимодействующего с подразделениями проектной организации, и выполняющая автоматизированное проектирование.Аспекты и иерархические уровни проектирования.Аспекты характеризуют ту или иную группу родственных свойств объекта. Функциональный аспект отражает физические и (или) информационные процессы, протекающие в объекте при его функционировании. Конструкторский аспект характеризует структуру, расположение в пространстве и форму составных частей объекта, технологический аспект—технологичность, возможности и способы изготовления объекта в заданных условиях.Функциональным называется проектирование, связанное с решением группы задач, относящихся к функциональному аспекту. При функциональном проектировании получают и преобразуют структурные, функциональные и принципиальные схемы. Аналогично выделяют конструкторское и технологическое проектирование.Внутри каждого аспекта выделяют иерархические уровни (уровни абстрагирования). На верхнем иерархическом уровне рассматривается весь сложный объект как совокупность взаимодействующих подсистем. На следующем уровне подсистем они рассматриваются отдельно как системы, состоящие из некоторых составных частей, и имеют большую подробность описаний. Процесс декомпозиции описаний и поблочного их рассмотрения можно продолжить вплоть до получения описаний блоков, состоящих из базовых элементов. Разделение описаний проектируемых объектов на иерархические уровни по степени подробности отражения свойств объектов составляет сущность блочно-иерархического подхода к проектированию. Соответственно группы процедур получения и преобразования описаний выделенных уровней.называются иерархическими уровнями проектирования.Процесс проектирования.Проектирование делится на стадии, этапы и процедуры. При проектировании сложных объектов выделяют стадии- научно-исследовательских работ (НИР)- опытно-конструкторских работ (ОКР)- технического проекта- рабочего проект- испытаний опытного образца.Стадию НИР во многих случаях можно разделить на стадии- предпроектных исследований- технического задания- технического предложения.На этих стадиях последовательно изучаются потребности в получении новых изделий с заданным целевым назначением, исследуются физические, информационные, конструктивные и технологические принципы построения изделий. Далее исследуются возможности реализации этих принципов, прогнозируются возможные значения характеристик и параметров объектов. Результатом НИР является формулировка технического задания (ТЗ) на разработку нового объекта.На стадии ОКР разрабатывается эскизный проект изделия, проверяются, конкретизируются и корректируются принципы и положения, установленные на стадии НИР.На стадии технического проекта принимаются подробные технические решения и прорабатываются все части проекта.На стадии рабочего проекта создается полный комплект конструкторско-технологической документации, достаточный для изготовления объекта.На стадии испытаний опытного образца (или пробной партии при крупносерийном производстве) получают результаты, позволяющие выявить возможные ошибки и недоработки проекта, принимаются меры к их устранению, после чего документация передается на предприятия, выделенные для серийного производства изделий.

Проектирование разделяется также на этапы. Используются при этом следующие понятия. Проектное решение—описание объекта или его составной части, достаточное для рассмотрения и принятия заключения об окончании проектирования или путях его продолжения. Проектная процедура—часть проектирования, заканчивающаяся получением проектного решения. Примерами проектных процедур служат синтез функциональной схемы устройства, оптимизация параметров функционального узла, трассировка межсоединений на печатной плате и т. п. Этап проектирования —это условно выделенная часть проектирования, сводящаяся к выполнению одной или нескольких проектных процедур, объединенных по признаку принадлежности получаемых проектных решений к одному иерархическому уровню и (или) аспекту описаний.

На любой стадии или этапе проектирования можно выявить ошибочность или неоптимальность ранее принятых решений и, следовательно, необходимость или целесообразность их пересмотра. Подобные возвраты характерны для проектирования и обусловливают его итерационный характер. Может быть также выявлена необходимость корректировки ТЗ. Вводят понятия процедур внешнего и внутреннего проектирования. К внешнему проектированию относят процедуры формирования или корректировки технического задания, а к внутреннему—процедуры реализации сформированного ТЗ. Тогда можно сказать, что происходит чередование процедур внешнего и внутреннего проектирования, что особенно характерно для ранних стадий (НИР, ОКР). При этом различают нисходящее (сверху вниз) и восходящее (снизу вверх) проектирование. При нисходящем проектировании задачи высоких иерархических уровней решаются прежде, чем задачи более низких иерархических уровней. При восходящем проектировании последовательность противоположная. Функциональное проектирование сложных систем чаще всего является нисходящим, конструкторское проектирование—восходящим.2. Типовые процедуры и маршруты проектирования

Процедуры синтеза и анализа.Проектные процедуры делятся на процедуры синтеза и анализа.Процедуры синтеза заключаются в создании описаний проектируемых объектов. В таких описаниях отображаются структура и параметры объекта и соответственно существуют процедуры структурного и параметрического синтеза. Под структурой объекта понимают состав его элементов и способы связи элементов друг с другом. Параметр объекта—величина, характеризующая некоторое свойство объекта или режим его функционирования. Примерами процедур структурного синтеза служат синтез структурной схемы с корректирующими устройствами (структура которой выражается перечнем входящих в нее звеньев и их соединений) или синтез алгоритма (его структура определяется составом и последовательностью операторов). Процедура параметрического синтеза заключается в расчете значений параметров элементов при заданной структуре объекта, например коэффициентов корректирующих устройств.Процедуры анализа заключаются в исследовании проектируемого объекта или его описания, направленном на получение полезной информации о свойствах объекта. Цель анализа — проверка работоспособности объекта. Часто задача анализа формулируется как задача установления соответствия двух различных описаний одного и того же объекта. При этом одно из описаний считается первичным и его корректность предполагается установленной. Другое описание относится к более подробному уровню иерархии или к другому аспекту, и его правильность нужно установить сопоставлением с первичным описанием. Такое сопоставление называется верификацией.Маршруты проектирования и принципы их построения.Маршрутом проектирования называется последовательность проектных процедур, ведущая к получению требуемых проектных решений.Основные принципы построения маршрутов проектирования:

- расчленение сложной задачи синтеза полного комплекта конструкторско - технологической документации на более простые задачи синтеза промежуточных проектных решений- чередование процедур синтеза/и верификации- итерационностьпроектирования

- усиление тщательности анализа (многовариантность, усложнение моделей) по мере приближения к окончательному проектному решению.Расчленение сложной задачи синтеза на ряд простых выполняется в соответствии с блочно - иерархическим подходом к проектированию. Расчленение позволяет организовать параллельно-последовательное выполнение проектных процедур коллективом разработчиков.Чередование процедур синтеза и верификации обусловлено тем, что для большинства задач структурного синтеза отсутствуют методы, обеспечивающие безошибочное получение проектных решений, удовлетворяющих требованиям ТЗ. Это связано с трудностями формализации задач синтеза, поэтому основные решения принимает человек на основе эвристических приемов. При этом невозможно учесть все многообразие качественных и количественных требований и избежать ошибок. Поэтому результаты предложенных при синтезе проектных решений контролируются выполнением верификации.

Итерационность проектирования обусловлена двумя факторами. Во-первых, она вытекает из особенностей блочно-иерархического подхода. Действительно, при нисходящем проектировании на n-м иерархическом уровне можно лишь предположительно судить о свойствах неспроектированных элементов, которые будут разрабатываться на следующем (n+1)-м уровне. При восходящем проектировании неопределенность связана с требованиями ТЗ, корректность которых может быть установлена только при выполнении процедур самого верхнего иерархического уровня. Поэтому ошибочность или неоптимальность решений, полученных на предыдущих этапах, выявляется в последующем, что требует возврата к предыдущим этапам для перепроектирования. Во-вторых, итерационность связана с чередованием синтеза и верификации, представляющим собой последовательное приближение к приемлемому проектному решению. Очевидно, что на первых итерациях синтезируемые варианты хуже с точки зрения выполнения ТЗ, чем последующие. Поэтому на первых итерациях с помощью довольно приближенных моделей полученные варианты оцениваются быстро и просто. Чем ближе очередной вариант к окончательному решению, тем более точное и всестороннее исследование требуется для его оценки. Следовательно, в процедурах верификации нужно использовать не одну модель объекта, а иерархический ряд моделей, различающихся сложностью и точностью.Усиление тщательности анализа по мере приближения к окончательному решению выражается также в том, что проверка производится по все большему числу показателей, оговариваемых в ТЗ, зачастую с учетом статистического характера параметров и нестабильности внешних условий.Подходы к верификации.Существуют два подхода к верификации проектных процедур: аналитический и численный.Аналитический подход основан на использовании формальных методов доказательства соответствия двух сравниваемых описаний. В настоящее время класс объектов, для которых удается реализовать аналитический подход, ограничен.Численный подход основан на математическом моделировании процессов функционирования проектируемых объектов. Моделирование—это исследование объекта путем создания его модели и оперирования ею с целью получения полезной информацииоб объекте. При математическом моделировании исследуется математическая модель (ММ) объекта.Математической моделью технического объекта называетсясовокупность математических объектов (чисел, скалярных переменных, векторов, матриц, графов и т. п.) и связывающих их отношений, отражающая свойства моделируемого технического объекта, интересующие инженера-проектировщика.Математическая модель, отражающая поведение моделируемого объекта при заданных изменяющихся во времени внешних воздействиях, называетсяимитационной.При конструировании необходимо определить прежде всего геометрические и топологические свойства объектов: форму деталей и их взаимное расположение в конструкции. Эти свойства отображаются с помощью структурных математических моделей, которые могут быть выражены уравнениями поверхностей и линий, системами неравенств, графами и т. п.При функциональном проектировании моделируют состояние или процессы—последовательности сменяющих друг друга состояний объекта. Такое моделирование осуществляется с помощью функциональных математических моделей. Типичная форма функциональных ММ—система уравнений, выражающая взаимосвязи между фазовыми ui (характеризуют состояние объекта), внешними qk (характеризуют состояние внешней по отношению к объекту среды) и независимыми переменными, которыми могут быть время t и про­странственные координаты х1, х2, х3 . Решением системы уравнений являются зависимости элементов вектора V фазовых переменных от Z=(t, х1, х2, х3 ), представляемых в виде совокупности графиков или в табличной форме.Верификация на основе моделирования заключается в установлении соответствия проектного решения, представленного математической моделью Мпр, исходному (эталонному) описанию, заданному в виде ТЗ или модели Мэт иного иерархического уровня или аспекта, нежели Мпр. Обе модели в общем случае имеют разные размерности и состав векторов фазовых переменных. При верификации должны использоваться одинаковые векторы внешних параметров Q=(q1, q2,...,ql). В этом случае обе модели должны приводить к одинаковым, в пределах заданной точности, зависимостям Vэт(Z) и Vпр(Z), где Vэт и Vпр —векторы фазовых переменных на выходах проектируемого объекта (или, что то же самое, на границах, отделяющих объект от внешней среды). Типичные внешние параметры—температура окружающей среды, напряжения источников питания, параметры входных сигналов и нагрузки. Соответствие двух описаний (моделей), в указанном выше смысле, называют функциональной эквивалентностью.

Векторы Z, Q, Vэт и Vпр или их отдельные элементы могут быть как дискретными (в частности, элементамивекторов Vэт и Vпр могут быть булевы переменные), так и непрерывнымиЕсли в результате моделирования для каждого тестового воздействия получают с оговоренной точностью совпадение выходных параметров, рассчитанных с помощью сравниваемых моделей, то говорят о соответствии (корректности) проверяемого описания. В практических задачах количество точек пространства (Z, Q) слишком велико, поэтому актуально сокращение числа испытаний при верификации.Типовые проектные процедуры.На рис. 1 представлена одна из возможных классификаций проектных процедур.Процедуры структурного синтеза по характеру проектируемого объекта делятся на:- синтез схем (принципиальных, функциональных, структурных, кинематических и др.)- конструкций (определение геометрических форм, взаимного расположения деталей)- процессов (технологических, вычислительных и др.)- документации (чертежей, пояснительных записок, ведомостей и др.).Основные процедуры параметрического синтеза- оптимизация номинальных значений параметров элементов - оптимизация их допусков- идентификация моделей- расчеты на основе упрощенных методикПо 2 пункту следует отметить, что важная задача назначения техни- оптимизация их допусков- идентификация моделей- расчеты на основе упрощенных методикПо 2 пункту следует отметить, что важная задача назначения технических требований на параметры объекта, решаемая при внешнем проектировании, отнесена к задаче оптимизации допусков.Идентификация моделей заключается в расчете параметров, используемых в ММ. Для про­цедур оптимизации, как правило, требуется выполнение большого объема вычислений с помощью сложных программных комплексов. В отдельных случаях удовлетворительные результаты параметриче­ского синтеза получаются подобных расчетным методикам неавтоматизированного проектирования. Детерминированная верификация может быть направлена на выявление соответствия структур объектов, заданных двумя различными описаниями (структурная верификация), или значений выходных параметров (параметрическая верификация). Параметрическая верификация может выполняться по полной совокупности параметров или по их части, в последнем случае различают верификацию статическую, динамическую, в частотной области. Статистический анализ предназначен для получения статистических сведений о выходных параметрах при заданных законах распределения параметров элементов. Результаты статистического анализа можно представлять гистограммами, оценками числовых характеристик распределений выходных параметров.Анализ чувствительности заключается в расчете коэффициентов чувствительности выходных параметров yiк изменениям параметров элементов (или внешних параметров) xi. Различают абсолютный и относительный коэффициенты чувствительности:где x и y—номинальные значения параметров xi и yi соответственно.

Задачи, в которых исследование свойств объекта сводится к од­нократному решению уравнений модели при фиксированных значе­ниях внутренних и внешних параметров, называются задачами од­новариантного анализа. Задачи, требующие многократного решенияуравнений модели при различных значениях внутренних и внешних параметров, называются задачами многовариантного анализа.