Б) Выборка бесповторная
Для бесповторной выборки - зависимые случайные величины. Можно показать, что
(т.к. объем генеральной совокупности N, как правило, большой и N ≈ N -1).
Итак, и для повторной выборки, и для бесповторной , т.е - смещенная оценка . ▲
Т.к. и , то выборочная дисперсия (в n среднем, полученная по разным выборкам) занижает генеральную дисперсию. Поэтому, заменяя на , мы допускаем систематическую погрешность в меньшую сторону. Чтобы ее ликвидировать, достаточно ввести поправку, умножив на . Тогда с учетом ( ) получим «исправленную» выборочную дисперсию:
.
Очевидно, что .
Т.е. является несмещенной и состоятельной оценкой генеральной дисперсии .
40. Понятие об интервальном оценивании. Доверительная вероятность и доверительный интервал. Предельная ошибка выборки. Ошибки репрезентативности выборки (случайные и систематические).
Интервальной оценкой параметра θ называется числовой интервал , к-ый с заданной вероятностью γ накрывает неизвестное значение параметра θ.
Обращаем внимание на то, что границы интервала и его величина находятся по выборочным данным и потому являются случайными величинами в отличие от оцениваемого параметра θ - величины неслучайной, поэтому правильнее говорить о том, что интервал «накрывает», а не «содержит» значение θ.
Такой интервал называется доверительным, а вер-ть γ - доверительной вер-тью, уровнем доверия или надежностью оценки.
Величина доверительного интервала существенно зависит от объема выборки n (уменьшается с ростом n) и от значения доверительной вер-ти γ (увеличивается с приближением γ к 1).
Очень часто (но не всегда) доверительный интервал выбирается симметричным относительно параметра θ, т.е. (θ-Δ,θ+Δ).
Наибольшее отклонение Δ оценки от оцениваемого параметра θ, в частности, выборочной средней (или доли) от генеральной средней (или доли), к-ое возможно с заданной доверительной вер-тью γ, называется предельной ошибкой выборки.
Ошибка Δ является ошибкой репрезентативности (представительства) выборки. Она возникает только вследствие того, что исследуется не вся совок-ть, а лишь часть, ее (выборка), отобранная случайно. Эту ошибку часто называют случайной ошибкой репрезентативности. Ее не следует путать с систематической ошибкой репрезентативности, появляющейся в рез-те нарушения принципа случайности при отборе элементов в выборку.
41. Формула доверительной вероятности при оценке генеральной доли признака. Средняя квадратическая ошибка повторной и бесповторной выборок и построение доверительного интервала для генеральной доли признака.
42. Формула доверительной вероятности при оценке генеральной средней. Средняя квадратическая ошибка повторной и бесповторной выборок и построение доверительного интервала для генеральной средней.
Построение доверительного интервала для гeнеральной средней и гeнеральной доли по большим выборкам. Для построения доверительных интервалов для параметров генеральных совокупностей м.б. реализованы 2 подхода, основанных на знании точного (при данном объеме выборки n) или асимптотического (при n → ∞) распределения выборочных характеристик (или некоторых функций от них). Первый подход реализован далее при построении интервальных оценок параметров для малых выборок. В данном параграфе рассматривается второй подход, применимый для больших выборок (порядка сотен наблюдений).
Теорема. Вер-ть того, что отклонение выборочной средней (или доли) от генеральной средней (или доли) не превзойдет число Δ > 0 (по абсолютной величине), равна:
Где | , Где . |
Ф(t) - функция (интеграл вероятностей) Лапласа.
Формулы получили название формул доверительной вер-ти для средней и доли.
Среднее квадратическое отклонение выборочной средней и выборочной доли собственно-случайной выборки называется средней квадратической (стандартной) ошибкой выборки (для бесповторной выборки обозначаем соответственно и ).
Следствие 1. При заданной доверительной вер-ти γ предельная ошибка выборки равна t-кратной величине средней квадратической ошибки, где Ф(t) = γ, т.е.
,
.
Следствие 2. Интервальные оценки (доверительные интервалы) для генеральной средней и генеральной доли могут быть найдены по формулам:
,
.
43. Определение необходимого объема повторной и бесповторной выборок при оценке генеральной средней и доли.
Для проведения выборочного наблюдения весьма важно правильно установить объем выборки n, к-ый в значительной степени определяет необходимые при этом временные, трудовые и стоимостные затраты для определения n необходимо задать надежность (доверительную вер-ть) оценки γ и точность (предельную ошибку выборки) Δ.
Если найден объем повторной выборки n, то объем соответствующей бесповторной выборки n' можно определить по формуле:
.
Т.к. , то при одних и тех же точности и надежности оценок объем бесповторной выборки n' всегда меньше объема повторной выборки n.
44. Статистическая гипотеза и статистический критерий. Ошибки 1-го и 2-го рода. Уровень значимости и мощность критерия. Принцип практической уверенности.
Определение. Статистической гипотезой называется любое предположение о виде или параметрах неизвестного закона распределения.
Различают простую и сложную статистические гипотезы. Простая гипотеза, в отличие от сложной, полностью определяет теоретическую функцию распределения СВ.
Проверяемую гипотезу обычно называют нулевой (или основной) и обозначают Н0. Наряду с нулевой гипотезой рассматривают альтернативную, или конкурирующую, гипотезу H1, являющуюся логическим отрицанием Н0. Нулевая и альтернативная гипотезы представляют собой 2 возможности выбора, осуществляемого в задачах проверки статистических гипотез.
Суть проверки статистической гипотезы заключается в том, что используется специально составленная выборочная характеристика (статистика) , полученная по выборке , точное или приближенное распределение которой известно.
Затем по этому выборочному распределению определяется критическое значение - такое, что если гипотеза Н0 верна, то вер-ть мала; так что в соответствии с принципом практической уверенности в условиях данного исследования событие можно (с некоторым риском) считать практически невозможным. Поэтому, если в данном конкретном случае обнаруживается отклонение , то гипотеза Н0 отвергается, в то время как появление значения , считается совместимым с гипотезой Н0, которая тогда принимается (точнее, не отвергается). Правило, по которому гипотеза Н0 отвергается или принимается, называется статистическим критерием или статистическим тестом.
Принцип практической уверенности:
Если вер-ть события А в данном испытании очень мала, то при однократном выполнении испытания можно быть уверенным в том, что событие А не произойдет, и в практической д-ти вести себя так, как будто событие А вообще невозможно.
Т.о., множество возможных значений статистики - критерия (критической статистики) разбивается на 2 непересекающихся подмножества: критическую область (область отклонения гипотезы) W и область допустимых значений (область принятия гипотезы) . Если фактически наблюдаемое значение статистики критерия попадает в критическую область W, то гипотезу Н0 отвергают. При этом возможны четыре случая:
Определение. Вероятность α допустить ошибку l-го рода, т.е. отвергнуть гипотезу Н0, когда она верна, называется уровнем значимости, или размером критерия.
Вероятность допустить ошибку 2-го рода, т.е. принять гипотезу Н0, когда она неверна, обычно обозначают β.
Определение. Вероятность (1-β) не допустить ошибку 2-го рода, т.е. отвергнуть гипотезу Н0, когда она неверна, называется мощностью (или функцией мощности) критерия.
Следует предпочесть ту критическую область, при которой мощность критерия будет наибольшей.
45. Построение теоретического закона распределения по опытным данным. Понятие о критериях согласия.
Одной из важнейших задач матем-кой статистики является установление теоретического закона распределения случайной величины, характеризующей изучаемый признак по опытному (эмпирическому) распределению, представляющему вариационный ряд.