Магнитное поле соленоида

Соленоидом называют катушку цилиндрической формы из проволоки, витки которой намотаны вплотную в одном направлении, а длина катушки значительно больше радиуса витка.

Магнитное поле соленоида можно представить как результат сложения полей, создаваемых несколькими круговыми токами, имеющими общую ось. На рисунке 3 видно, что внутри соленоида линии магнитной индукции каждого отдельного витка имеют одинаковое направление, тогда как между соседними витками они имеют противоположное направление.

Рис. 3

Поэтому при достаточно плотной намотке соленоида противоположно направленные участки линий магнитной индукции соседних витков взаимно уничтожаются, а одинаково направленные участки сольются в общую линию магнитной индукции, проходящую внутри соленоида и охватывающую его снаружи.Изучение этого поля с помощью опилок показало, что внутри соленоида поле является однородным, магнитные линии представляют собой прямые линии, параллельные оси соленоида, которые расходятся на его концах и замыкаются вне соленоида (рис. 4).

Рис. 4

Нетрудно заметить сходство между магнитным полем соленоида (вне его) и магнитным полем постоянного стержневого магнита (рис. 5). Конец соленоида, из которого магнитные линии выходят, аналогичен северному полюсу магнита N, другой же конец соленоида, в который магнитные линии входят, аналогичен южному полюсу магнита S.

Рис. 5

Полюсы соленоида с током на опыте легко определить с помощью магнитной стрелки. Зная же направление тока в витке, эти полюсы можно определить с помощью правила правого винта: вращаем головку правого винта по току в витке, тогда поступательное движение острия винта укажет направление магнитного поля соленоида, а следовательно, и его северного полюса. Модуль магнитной индукции внутри однослойного соленоида вычисляется по формуле

B=μμ 0 NI l =μμ 0 nl,

где Ν — число витков в соленоиде, I — длина соленоида, n — число витков, приходящееся на единицу длины соленоида.

Намагничивание магнетика. Вектор намагниченности.
 
Если по проводнику течет ток, то вокруг проводника создаётся МП. Мы пока рассматривали провода, по которым текли токи, находящиеся в вакууме. Если провода, несущие ток, находятся в некоторой среде, то м.п. изменяется. Это объясняется тем, что под действием м.п. всякое вещество способно приобретать магнитный момент, или намагничиваться (вещество становится магнетиком). Вещества, намагничивающиеся во внешнем м.п. против направления поля называются диамагнетиками. Вещества, слабо намагничивающиеся во внешнем м.п. по направлению поля называются парамагнетиками Намагниченное в-во создаёт м.п. – , это м.п. накладывается на м.п., обусловленное токами – . Тогда результирующее поле:
  . (54.1)

Истинное (микроскопическое) поле в магнетике сильно изменяется в пределах межмолекулярных расстояний. – усреднённое макроскопическое поле.

Для объяснения намагничения тел Ампер предположил, что в молекулах вещества циркулируют круговые микроскопические токи, обусловленные движением электронов в атомах и молекулах. Каждый такой ток обладает магнитным моментом и создаёт в окружающем пространстве м.п.

Если внешнее поле отсутствует, то молекулярные токи ориентированы беспорядочным образом, и обусловленное ими результирующее поле равно 0.

Намагниченностью называют векторную величину, равную магнитному моменту единицы объёма магнетика:

  , (54.3)

где - физически бесконечно малый объём, взятый в окрестности рассматриваемой точки; - магнитный момент отдельной молекулы.

Суммирование производится по всем молекулам, заключённым в объёме (вспомним где, - поляризованность диэлектрика , - дипольный элемент ).

Намагниченность можно представить так:

Токи намагничивания I' . Намагничивание вещества связано с преимущественной ориентацией магнитных моментов отдельных молекул в одном направлении. Элементарные круговые токи, связанные с каждой молекулой, называются молекулярными. Молекулярные токи оказываются ориентированными, т.е. возникают токи намагничивания - .

Токи, текущие по проводам, вследствие движения в веществе носителей тока называют токами проводимости - .

Для электрона движущегося по круговой орбите по часовой стрелке; ток направлен против часовой стрелки и по правилу правого винта направлен вертикально вверх.

Циркуляция вектора намагниченности по произвольному замкнутому контуру равна алгебраической сумме токов намагничивания, охватываемых контуром Г.

Дифференциальная форма записи теоремы о циркуляции вектора .

  (54.7)

Дифференциальная форма записи теоремы о циркуляции - формула (54.7) – ротор вектора намагниченности равен плотности тока намагничивания в той же точке пространства вещества

73Напряжённость магни́тного по́ля (стандартное обозначение Н) — векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности M.

В СИ: где магнитная постоянная.

В СГС:

· В простейшем случае изотропной (по магнитным свойствам) среды и в приближении достаточно низких частот изменения поля B и H просто пропорциональны друг другу, отличаясь просто числовым множителем (зависящим от среды) B = μ H в системе СГС или B = μ0μ H в системе СИ (см. Магнитная проницаемость, также см. Магнитная восприимчивость).

В системе СГС напряжённость магнитного поля измеряется в эрстедах (Э), в системе СИ — в амперах на метр (А/м). В технике эрстед постепенно вытесняется единицей СИ — ампером на метр.

1 Э = 1000/(4π) А/м ≈ 79,5775 А/м.

1 А/м = 4π/1000 Э ≈ 0,01256637 Э.

[править] Физический смысл

В вакууме (или в отсутствие среды, способной к магнитной поляризации, а также в случаях, когда последняя пренебрежима) напряжённость магнитного поля совпадает с вектором магнитной индукции с точностью до коэффициента, равного 1 в СГС и μ0 в СИ.

В магнетиках (магнитных средах) напряжённость магнитного поля имеет физический смысл «внешнего» поля, то есть совпадает (быть может, в зависимости от принятых единиц измерения, с точностью до постоянного коэффициента, как например в системе СИ, что общего смысла не меняет) с таким вектором магнитной индукции, какой «был бы, если магнетика не было».

Например, если поле создаётся катушкой с током, в которую вставлен железный сердечник, то напряжённость магнитного поля H внутри сердечника совпадает (в СГС точно, а в СИ — с точностью до постоянного размерного коэффициента) с вектором B0, который был бы создан этой катушкой при отсутствии сердечника и который в принципе может быть рассчитан исходя из геометрии катушки и тока в ней, без всякой дополнительной информации о материале сердечника и его магнитных свойствах.

При этом надо иметь в виду, что более фундаментальной характеристикой магнитного поля является вектор магнитной индукции B. Именно он определяет силу действия магнитного поля на движущиеся заряженные частицы и токи, а также может быть непосредственно измерен, в то время как напряжённость магнитного поля H можно рассматривать скорее как вспомогательную величину (хотя рассчитать её, по крайней мере, в статическом случае, проще, в чём и состоит её ценность: ведь H создают так называемые свободные токи, которые сравнительно легко непосредственно измерить, а трудно измеримые связанные токи — то есть токи молекулярные и т. п. — учитывать не надо).

Правда, в обычно используемое выражение для энергии магнитного поля (в среде) B и H входят почти равноправно, но надо иметь в виду, что в эту энергию включена и энергия, затраченная на поляризацию среды, а не только энергия собственно поля[1]. Энергия магнитного поля как такового выражается только через фундаментальное B. Тем не менее видно, что величина H феноменологически и тут весьма удобна.

74Виды магнетиков Диамагнетики имеют магнитную проницаемость чуть меньше 1. Отличаются тем, что выталкиваются из области магнитного поля.

Парамагнетики имеют магнитную проницаемость чуть более 1. Подавляющее количество материалов являются диа- и пара- магнетиками.

Ферромагнетики обладают исключительно большой магнитной проницаемостью, доходящей до миллиона.

По мере усиления поля проявляется явление гистерезиса, когда при увеличении напряженности и при последующем уменьшении напряженности значения В(Н) не совпадают друг с другом. В литературе различают несколько определений магнитной проницаемости.

Начальная магнитная проницаемость mн - значение магнитной проницаемости при малой напряженности поля.

Максимальная магнитная проницаемость mmax - максимальное значение магнитной проницаемости, которое достигается обычно в средних магнитных полях.

Из других основных терминов, характеризующих магнитные материалы, отметим следующие.

Намагниченность насыщения- максимальная намагниченность, которая достигается в сильных полях, когда все магнитные моменты доменов ориентированы вдоль магнитного поля.

Петля гистерезиса- зависимость индукции от напряженности магнитного поля при изменении поля по циклу: подъем до определенного значения - уменьшение, переход через нуль, после достижения того же значения с обратным знаком - рост и т.п.

Максимальная петля гистерезиса- достигающая максимальной намагниченности насыщения.

Остаточная индукция Bост- индукция магнитного поля на обратном ходе петли гистерезиса при нулевой напряженности магнитного поля.

Коэрцитивная сила Нс - напряженность поля на обратном ходе петли гистерезиса при которой достигается нулевая индукция.

Магнитные моменты атомов

 

 
Магнитный момент Элементарные частицы обладают внутренним квантовомеханическим свойством известным как спин. Оно аналогично угловому моменту объекта вращающегося вокруг собственного центра масс, хотя строго говоря, эти частицы являются точечными и нельзя говорить об их вращении. Спин измеряют в единицах приведённой планковской постоянной ( ), тогда электроны, протоны и нейтроны имеют спин равный ½ . В атоме электроны обращаются вокруг ядра и обладают орбитальным угловым моментом помимо спина, в то время как ядро само по себе имеет угловой момент благодаря ядерному спину.[31] Магнитное поле, создаваемое магнитным моментом атома, определяется этими различными формами углового момента, как и в классической физике вращающиеся заряженные объекты создают магнитное поле. Однако, наиболее значительный вклад происходит от спина. Благодаря свойству электрона, как и всех фермионов, подчиняться правилу запрета Паули, по которому два электрона не могут находиться в одном и том же квантовом состоянии, связанные электроны спариваются друг с другом, и один из электронов находится в состоянии со спином вверх, а другой — с противоположной проекцией спина — состояние со спином вниз. Таким образом магнитные моменты электронов сокращаются, уменьшая полный магнитный дипольный момент системы до нуля в некоторых атомах с чётным числом электронов.[32] В ферромагнитных элементах, таких как железо, нечётное число электронов приводит к появлению неспаренного электрона и к ненулевому полному магнитному моменту. Орбитали соседних атомов перекрываются, и наименьшее энергетическое состояние достигается, когда все спины неспаренных электронов принимают одну ориентацию, процесс известный как обменное взаимодействие. Когда магнитные моменты ферромагнитных атомов выравниваются, материал может создавать измеримое макроскопическое магнитное поле. Парамагнитные материалы состоят из атомов , магнитные моменты которых разориентированы в отсутствии магнитного поля, но магнитные моменты отдельных атомов выравниваются при приложении магнитного поля.[32][33] Ядро атома тоже может обладать ненулевым полным спином. Обычно при термодинамическом равновесии спины ядер ориентированы случайным образом. Однако, для некоторых элементов (таких как ксенон-129) возможно поляризовать значительную часть ядерных спинов для создания состояния с сонаправленными спинами —состояния называемого гиперполяризацией. Это состояние имеет важное прикладное значение в магнитно-резонансной томографии.[34][35]

76 Магнитное поле обладает энергией. Подобно тому, как в заряженном конденсаторе имеется запас электрической энергии, в катушке, по виткам которой протекает ток, имеется запас магнитной энергии.

Если включить электрическую лампу параллельно катушке с большой индуктивностью в электрическую цепь постоянного тока, то при размыкании ключа наблюдается кратковременная вспышка лампы. Ток в цепи возникает под действием ЭДС самоиндукции. Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

Энергия Wм магнитного поля катушки с индуктивностью L, создаваемого током I, равна

Wм = LI2/ 2