Следствия преобразований Лоренца

Изменение длины[править | править вики-текст]

Основная статья: Релятивистское сокращение длины

Пусть в системе отсчета покоится стержень, и координаты его начала и конца равны , . Для определения длины стержня в системе фиксируются координаты этих же точек в один и тот же момент времени системы . Пусть — собственная длина стержня в , а — длина стержня в . Тогда из преобразований Лоренца следует:

или

Таким образом, длина движущегося стержня, измеренная «неподвижными» наблюдателями, оказывается меньше, чем собственная длина стержня.

Относительность одновременности[править | править вики-текст]

Если два разнесённых в пространстве события (например, вспышки света) происходят одновременно в движущейся системе отсчёта, то они будут неодновременны относительно «неподвижной» системы.