Уравнение бегущей волны. Фазовая скорость. Волновое уравнение
Бегущими волнами называются волны, которые переносят в пространстве энергию. Перенос энергии в волнах количественно характеризуется вектором плотности потока энергии. Этот вектор для упругих волн называется вектором Умова (по имени русского ученого Н. А. Умова (1846 — 1915), решившего задачу о движении энергии в среде). Направление вектора Умова совпадает с направлением переноса энергии, а его модуль равен энергии, переносимой волной за единицу времени через единичную площадку, расположенную перпендикулярно направлению распространения волны.
Для вывода уравнения бегущей волны — зависимости смещения колеблющейся частицы от координат и времени — рассмотрим плоскую волну, предполагая, что колебания носят гармонический характер, а ось х совпадает с направлением распространения волны (рис. 220). В данном случае волновые поверхности перпендикулярны оси х, а так как все точки волновой поверхности колеблются одинаково, то смещение будет зависеть только от х и t, т. е. = (х, t).
На рис. 220 рассмотрим некоторую частицу среды В, находящуюся от источника колебаний О на расстоянии х. Если колебания точек, лежащих в плоскости x = 0, описываются функцией (0, t) = А cos , то частица среды В колеблется по тому же закону, но ее колебания будут отставать по времени от колебаний источника на , так как для прохождения волной расстояния х требуется время = x/v, где v — скорость распространения волны. Тогда уравнение колебаний частиц, лежащих в плоскости х, имеет вид
(154.1)
откуда следует, что (х, t) является не только периодической функцией времени, но и периодической функцией координаты х. Уравнение (154.1) есть уравнение бегущей волны. Если плоская волна распространяется в противоположном направлении, то
В общем случае уравнение плоской волны, распространяющейся вдоль положительного направления оси х в среде, не поглощающей энергию, имеет вид
(154.2)
где А =const — амплитуда волны, — циклическая частота волны, — начальная фаза колебаний, определяемая в общем случае выбором начал отсчета х и t, [ ] — фаза плоской волны.
Для характеристики волн используется волновое число
(154.3)
Учитывая (154.3), уравнению (154.2) можно придать вид
(154.4)
Уравнение волны, распространяющейся вдоль отрицательного направления оси х, отличается от (154.4) только знаком члена kx.
Основываясь на формуле Эйлера (140.7), уравнение плоской волны можно записать в виде
где физический смысл имеет лишь действительная часть (см. § 140).
Предположим, что при волновом процессе фаза постоянна, т. е.
(154.5)
Продифференцировав выражение (154.5) и сократив на , получим ,
откуда
(154.6)
Следовательно, скорость v распространения волны в уравнении (154.6) есть не что иное, как скорость перемещения фазы волны, и ее называют фазовой скоростью.
Повторяя ход рассуждений для плоской волны, можно доказать, что уравнение сферической волны — волны, волновые поверхности которой имеют вид концентрических сфер, записывается как
(154.7)
где — расстояние от центра волны до рассматриваемой точки среды. В случае сферической волны даже в среде, не поглощающей энергию, амплитуда колебаний не остается постоянной, а убывает с расстоянием по закону 1/ . Уравнение (154.7) справедливо лишь для , значительно превышающих размеры источника (тогда источник колебаний можно считать точечным).
Из выражения (154.3) вытекает, что фазовая скорость
(154.8)
Если фазовая скорость волн в среде зависит от их частоты, то это явление называют дисперсией волн, а среда, в которой наблюдается дисперсия волн, называется диспергирующей средой.
Распространение волн в однородной изотропной среде в общем случае описывается волновым уравнением — дифференциальным уравнением в частных производных
или
(154.9)
где v — фазовая скорость, — оператор Лапласа. Решением уравнения (154.9) является уравнение любой волны. Соответствующей подстановкой можно убедиться, что уравнению (154.9) удовлетворяют, в частности, плоская волна (см. (154.2)) и сферическая волна (см. (154.7)). Для плоской волны, распространяющейся вдоль оси х, волновое уравнение имеет вид
(154.10)