Переменный ток

Рассмотренные установившиеся вынужденные электромагнитные колебания можно рассматривать как протекание в цепи, содержащей резистор, катушку индуктивности и конденсатор, переменного тока. Переменный ток можно считать квазистационарным, т. е. для него мгновенные значения силы тока во всех сечениях цепи практически одинаковы, так как их изменения происходят достаточно медленно, а электромагнитные возмущения распространяются по цепи со скоростью, равной скорости света. Для мгновенных значений квазистационарных токов выполняются закон Ома и вытекающие из него правила Кирхгофа, которые будут использованы применительно к переменным токам (эти законы уже использовались при рассмотрении электромагнитных колебаний).

Рассмотрим последовательно процессы, происходящие в цепи, содержащей резистор, катушку индуктивности и конденсатор, при приложении к ней переменного напряжения

(149.1)

где Um — амплитуда напряжения.

Рис. 213

1. Переменный ток, текущий через резистор сопротивлением R ( ) (рис. 213, а). При выполнении условия квазистационарности ток через резистор определяется законом Ома:

где амплитуда силы тока

Для наглядного изображения соотношений между переменными токами и напряжениями воспользуемся методом векторных диаграмм. На рис. 213, б дана векторная диаграмма амплитудных значений тока Im и напряжения Um на резисторе (сдвиг фаз между Im и Um равен нулю).

2. Переменный ток, текущий через катушку индуктивностью L ( ) (рис. 214, a). Если в цепи приложено переменное напряжение (149.1), то в ней потечет переменный ток, в результате чего возникнет ЭДС самоиндукции (см. (126.3)) .

Рис. 214

Тогда закон Ома (см. (100.3)) для рассматриваемого участка цепи имеет вид

откуда

(149.2)

Так как внешнее напряжение приложено к катушке индуктивности, то

(149.3)

есть падение напряжения на катушке. Из уравнения (149.2) следует, что

или после интегрирования, учитывая, что постоянная интегрирования равна нулю (так как отсутствует постоянная составляющая тока), получим

(149.4)

где

Величина

(149.5)

называется реактивным индуктивным сопротивлением (или индуктивным сопротивлением). Из выражения (149.4) вытекает, что для постоянного тока ( = 0) катушка индуктивности не имеет сопротивления. Подстановка значения в выражение (149.2) с учетом (149.3) приводит к следующему значению падения напряжения на катушке индуктивности:

(149.6)

Сравнение выражений (149.4) и (149.6) приводит к выводу, что падение напряжения UL опережает по фазе ток I, текущий через катушку, на /2, что и показано на векторной диаграмме (рис. 214, б).

3. Переменный ток, текущий через конденсатор емкостью С ( )

 

 

Рис. 215

(рис. 215, а). Если переменное напряжение (149.1) приложено к конденсатору, то он все время перезаряжается, и в цепи потечет переменный ток. Так как все внешнее напряжение приложено к конденсатору, а сопротивлением подводящих проводов можно пренебречь, то

Сила тока

(149.7)

где

Величина

называется реактивным емкостным сопротивлением (или емкостным сопротивлением). Для постоянного тока ( = 0) , т. е. постоянный ток через конденсатор течь не может. Падение напряжения на конденсаторе

(149.8)

Сравнение выражений (149.7) и (149.8) приводит к выводу, что падение напряжения UC отстает по фазе от текущего через конденсатор тока I на /2. Это показано на векторной диаграмме (рис. 215, б).

Рис. 216

4. Цепь переменного тока, содержащая последовательно включенные резистор, катушку индуктивности и конденсатор. На рис. 216, а представлена цепь, содержащая резистор сопротивлением R, катушку индуктивностью L и конденсатор емкостью С, на концы которой подается переменное напряжение (149.1). В цепи возникнет переменный ток, который вызовет на всех элементах цепи соответствующие падения напряжения UR, UL и UС. На рис. 216, б представлена векторная диаграмма амплитуд падений напряжений на резисторе (UR), катушке (UL) и конденсаторе (UС). Амплитуда Um приложенного напряжения должна быть равна векторной сумме амплитуд этих падений напряжений. Как видно из рис. 216, б, угол определяет разность фаз между напряжением и силой тока. Из рисунка следует, что (см. также формулу (147.16))

(149.9)

Из прямоугольного треугольника получаем

откуда амплитуда силы тока имеет значение

(149.10)

совпадающее с (147.15).

Следовательно, если напряжение в цепи изменяется по закону

то в цепи течет ток

(149.11)

где и определяются соответственно формулами (149.9) и (149.10).

Величина

(149.12)

называется полным сопротивлением цепи, а величина

реактивным сопротивлением.

Рассмотрим частный случай, когда в цепи отсутствует конденсатор. В данном случае падения напряжений UR и UL в сумме равны приложенному напряжению U. Векторная диаграмма для данного случая представлена на рис. 217, из которого следует, что

(149.13)

Выражения (149.9) и (149.10) совпадают с (149.13), если в них 1/( С) = 0, т. е. С = . Следовательно, отсутствие конденсатора в цепи означает С = , а не С = 0. Данный вывод можно трактовать следующим образом: сближая обкладки конденсатора до их полного соприкосновения, придем к цепи, в которой конденсатор отсутствует (расстояние между обкладками стремится к нулю, а емкость — к бесконечности; см. (94.3)).

 

Рис. 217