Среднее число столкновений и средняя длина свободного пробега молекул
Молекулы газа, находясь в состоянии хаотического движения, непрерывно сталкиваются друг с другом. Между двумя последовательными столкновениями молекулы проходят некоторый путь l, который называется длиной свободного пробега. В общем случае длина пути между последовательными столкновениями различна, но так как мы имеем дело с огромным числом молекул и они находятся в беспорядочном движении, то можно говорить о средней длине свободного пробега молекул .
Минимальное расстояние, на которое сближаются при столкновении центры двух молекул, называется эффективным диаметром молекулы d (рис.68). Он зависит от скорости сталкивающихся молекул, т.е. от температуры газа (несколько уменьшается с ростом температуры).
Рис. 68 Рис. 69
Так как за 1 с молекула проходит в среднем путь, равный средней арифметической скорости , и если — среднее число столкновений, испытываемых одной молекулой газа за 1 с, то средняя длина свободного пробега
Для определения представим себе молекулу в виде шарика диаметром d, которая движется среди других «застывших» молекул. Эта молекула столкнется только с теми молекулами, центры которых находятся на расстояниях, равных или меньших d, т. е. лежат внутри «ломаного» цилиндра радиусом d (рис. 69).
Среднее число столкновений за 1 с равно числу молекул в объеме «ломаного» цилиндра: = nV, где n – концентрация молекул, а V = pd2 . Т.е. среднее число столкновений = npd2 .
Расчеты показывают, что при учете движения других молекул
Тогда средняя длина свободного пробега
т.е. обратно пропорциональна концентрации n молекул. С другой стороны, из (42.6) следует, что при постоянной температуре п пропорциональна давлению р. Следовательно,