Меры защиты силовых кабелей и кабелей связи между зданиями

Связи между зданиями подразделяются на два главных типа: силовые кабели с металлической оболочкой, металлические (витая пара, волноводы, коаксиальные и многожильные кабели) и оптоволоконные кабели. Защитные меры зависят от типов кабелей, их количества, а также от того, соединены ли системы молниезащиты двух зданий.

Полностью изолированный оптоволоконный кабель (без металлического армирования, фольги для защиты от влаги или стального внутреннего проводника) может быть применен без дополнительных мер защиты. Использование такого кабеля является наилучшим вариантом, так как обеспечивает полную защиту от электромагнитных воздействий. Однако если кабель содержит протяженный металлический элемент (за исключением жил дистанционного питания), последний должен быть на входе в здание присоединяется к общей системе соединений, и не должен напрямую входить в оптический приемник или передатчик. Если здания расположены близко друг к другу и их системы молниезащиты не соединены, предпочтительнее использовать оптоволоконный кабель без металлических элементов во избежание больших токов в этих элементах и их перегрева. Если же имеется соединенный с системой молниезащиты кабель, то можно использовать оптический кабель с металлическими элементами, чтобы отвести часть тока от первого кабеля.

Металлические кабели между зданиями с изолированными системами молниезащиты.При данном соединении систем защиты повреждения весьма вероятны на обоих концах кабеля вследствие прохождения по нему тока молнии. Поэтому на обоих концах кабеля необходимо установить УЗП, а также, где возможно, следует соединять системы молниезащиты двух зданий и прокладывать кабель в соединенных металлических лотках.

Металлические кабели между зданиями с соединенными системами молниезащиты.В зависимости от числа кабелей между зданиями, защитные меры могут включать соединение кабельных лотков при нескольких кабелях (для новых кабелей) или при большом количестве кабелей, как в случае с химическим производством, экранирование или применение гибких металлошлангов для многожильных кабелей управления. Подсоединение обоих концов кабеля к связанным системам молниезащиты часто обеспечивает достаточное экранирование, особенно если кабелей много, и ток распределится между ними.

 

Вопрос №43. Шаговое напряжение. Природа, характер действия на человека. Защита от него.

Шаговым напряжением (напряжением шага) называется напряжение между двумя точками цепи тока, находящимися одна от другой на расстоянии шага, на которых одновременно стоит человек. Шаговое напряжение зависит от удельного сопротивления грунта и силы протекающего через него тока.

В области защитных устройств от поражения током — заземления, зануления и др. — интерес представляют в первую очередь напряжения между точками на поверхности земли (или иного основания, на котором стоит человек) в зоне растекания тока с заземлителя.

Шаговое напряжение определяется отрезком, длина которого зависит от формы потенциальной кривой, т.е. от типа заземлителя, и изменяется от некоторого максимального значения до нуля с изменением расстояния от заземлителя.

Допустим, что в земле в точке О размещен один заземлитель (электрод) и через этот заземлитель проходит ток замыкания на землю. Вокруг заземлителя образуется зона растекания тока по земле, т. е. зона земли, за пределами которой электрический потенциал, обусловленный токами заземления на землю, может быть условно принят равным нулю.

Причина этого явления заключается в том, что объем земли, через который проходит ток замыкания на землю, по мере удаления от заземлителя увеличивается, при этом происходит растекание тока в земле. На расстоянии 20 м и более от заземлителя объем земли настолько возрастает, что плотность тока становится весьма малой, напряжение между точками земли и точками еще более удаленными не обнаруживается сколько-нибудь ощутимо.

Распределение напряжения на различных расстояниях от заземлителя:

1 — потенциальная кривая 2 — кривая характеризующая изменение шагового напряжения

Если измерить напряжение Uз между точками, находящимися на разных расстояниях в любом направлении от заземлителя, а затем построить график зависимости этих напряжений от расстояния до заземлителя, то получится потенциальная кривая ) Если разбить линию ОН на участки длиной 0,8 м, что соответствует длине шага человека, то ноги его могут оказаться в точках разного потенциала Чем ближе к заземлителю, тем напряжение между этими точками на земле будет больше (Uaб > Uбв; Uбв > Uвг)

Шаговое напряжение для точек В и Г определяется как разность потенциалов между этими точками

Uш = Uв - Uг = UзB

где B — коэффициент напряжения шага, учитывающий форму потенциальной кривой 1. Наибольшие значения напряжения шага и коэффициента B будут при наименьшем расстоянии от заземлителя, когда человек одной ногой стоит на заземлителе, а другая нога на расстоянии шага.

Кривая 2 характеризует изменение шагового напряжения.

Опасное шаговое напряжение может, например, возникнуть вблизи упавшего на землю и находящегося под напряжением провода. В этом случае запрещается приближаться к проводу, лежащему на земле, на расстояние ближе 8 - 10 м.

Шаговое напряжение отсутствует, если человек стоит или на линии равного потенциала или вне зоны растекания тока.

Максимальные значения шагового напряжения будут при наименьшем расстоянии от заземлителя, когда человек одной ногой стоит непосредственно на заземлителе, а другой — на расстоянии шага от него. Объясняется это тем, что потенциал вокруг заземлителей распределяется по вогнутым кривым и, следовательно, наибольший перепад оказывается, как правило, в начале кривой.

Наименьшие значения шагового напряжения будут при бесконечно большом удалении от заземлителя, а практически за пределами поля растекания тока, т.е. дальше 20 м.

В пределах площади, на которой размещены электроды группового заземлителя, шаговое напряжение меньше, чем при использовании одиночного заземлителя. Шаговое напряжение также изменяется от некоторого максимального значения до нуля — при удалении от электродов.

Максимальное шаговое напряжение будет, как и при одиночном заземлителе, в начале потенциальной кривой, т.е. когда человек одной ногой стоит непосредственно на электроде (или на участке земли, под которым зарыт электрод), а другой — на расстоянии шага от электрода.

Минимальное шаговое напряжение соответствует случаю, когда человек стоит на «точках» с одинаковыми потенциалами.

При попадании под шаговое напряжение возникают непроизвольные судорожные сокращения мышц ног и как следствие этого падение человека на землю. В этот момент прекращается действие на человека шагового напряжения и возникает иная, более тяжелая ситуация: вместо нижней петли в теле человека образуется новый, более опасный путь тока, обычно от рук к ногам и создается реальная угроза смертельного поражения током. При попадании в область действия шагового напряжения необходимо выходить из опасной зоны минимальными шажками.

 

Вопрос №44. Электромагнитное излучение. Природа, характер действия на человека. Защита от него.

Электромагнитное излучение- это вид энергии, представляющей электромагнитные волны, возбуждаемые различными излучающими объектами,например, заряженными частицами, атомами, молекулами, а также различными генерирующими устройствами и распространяющиеся в космическом пространстве со скоростью света т.е. около 300 000 км/сек. Электромагнитные волны создаются за счет электрических и магнитных вибраций, возникающих в атомах, т.е. движущимися с ускорением электрическими зарядами имеютширокий диапазон частот.Скорость распространения электромагнитных волн через различные материалы различна.

В зависимости от длины волны различают гамма-излучение, рентгеновское, ультрафиолетовое излучение, видимый свет, инфракрасное излучение, радиоволны и низкочастотные электромагнитные колебания.

Воздействия разных видов излучения на организм человека тоже различны: гамма- и рентгеновское излучения пронизывают его, вызывая повреждение тканей, видимый свет вызывает зрительное ощущение в глазу, инфракрасное излучение, падая на тело человека, нагревает его, а радиоволны и электромагнитные колебания низких частот человеческим организмом и вовсе не ощущаются.

Причиной нарушения здоровья людей в зонах с повышенной интенсивностью электромагнитных излучений является устойчивое изменение характеристик собственных энергетических полей организма (биополей) под воздействием крупных сгустков энергетических образований различных излучений.

После выхода из опасной зоны (например, зоны воздействия электромагнитного излучения) защитные механизмы здорового организма в состоянии частично или полностью устранить образовавшиеся изменения биополя или молекулярной структуры организма.

Однако, при длительном или постоянном пребывании в местах проявления повышенных электромагнитных излучений такие изменения неизбежно накапливаются, приобретая стабильный болезненный характер.

Так, при длительном пребывании в зонах с повышенной интенсивностью электромагнитных излучений возникают недомогания со следующими симптомами:

  • быстрая утомляемость;
  • состояние апатии;
  • общая слабость;
  • головные боли;
  • нарушение функционирования ослабленных органов, переходящее в постоянное болезненное состояние;
  • ослабление внимания, памяти;
  • нарушение логики мышления и речи;
  • нервные и психические расстройства.

В критических случаях наблюдаются:

  • заболевание крови;
  • онкологические заболевания;
  • болезни Паркинсона и Альцгеймера;
  • синдром внезапной смерти внешне здорового ребёнка;
  • особое место занимает опасность воздействия электромагнитных излучений для развивающегося организма в утробе матери (эмбриона), детей, а также людей, подверженных аллергическим заболеваниям, поскольку они обладают исключительно большой чувствительностью к ЭМИ.

Существуют национальные и международные гигиенические нормативы уровней ЭМП, в зависимости от диапазона, для селитебной зоны и на рабочих местах.

Существуют гигиенические нормы освещённости; также разработаны нормативы безопасности при работе с лазерным излучением.

Допустимые уровни электромагнитного излучения (плотность потока электромагнитной энергии) отражаются в нормативах, которые устанавливают государственные компетентные органы, в зависимости от диапазона ЭМП. Эти нормы могут быть существенно различны в разных странах.

В России действует СанПиН 2.2.4.1191—03 «Электромагнитные поля в производственных условиях, на рабочих местах. Санитарно-эпидемиологические правила и нормативы», а также гигиенические нормативы ГДР (ПДУ) 5803-91 (ДНАОП 0.03-3.22-91) «Предельно допустимые уровни (ПДУ) воздействия электромагнитных полей (ЭМП) диапазона частот 10—60 кГц», «Промышленное электроснабжение 50 Гц».

Допустимые уровни излучения базовых станций мобильной связи (900 и 1800 МГц, суммарный уровень от всех источников) в санитарно-селитебной зоне в некоторых странах заметно различаются: Украина: 2,5 мкВт/см²; Россия, Венгрия: 10 мкВт/см²; США, Скандинавские страны: 100 мкВт/см².

Допустимые нормативы регулируются нормами радиационной безопасности — НРБ-99/2009.

Существуют административные и контролирующие органы — инспекция по радиосвязи, которые регулируют распределение частотных диапазонов для различных пользователей, соблюдение выделенных диапазонов, отслеживают незаконное пользование радиоэфиром.

Основными способами защиты от ЭМИ являются:

1.Экранирование (активное и пассивное; источника электромагнитного излучения или же объекта защиты; комплексное экранирование).

2. Удаление источников из ближней зоны; из рабочей зоны.

3. Конструктивное совершенствование оборудования с целью снижения используемых уровней ЭМП, общей потребляемой и излучаемой мощности оборудования.

4. Ограничение времени пребывания операторов или населения в зоне действия ЭМП.

Вопрос №45. Ионизирующие излучения, их природа, и воздействия на организм человека.

Наиболее значимы следующие типы ионизирующего излучения: коротковолновое электромагнитное излучение (рентгеновское и гамма-излучения), потоки заряженных частиц: бета-частиц (электронов и позитронов), альфа-частиц (ядер атома гелия-4), протонов, других ионов, мюонов и др., а также нейтронов.

Источниками ионизирующих излучений в промышленности являются установки рентгеноструктурного анализа, высоковольтные электровакуумные системы, радиационные дефектоскопы, толщиномеры, плотномеры и др.

К ионизирующим относятся корпускулярные излучения, которые состоят из частичек с массой покоя, которая отличается от ноля (альфа-, бета-частички, нейтроны) и электромагнитные излучения (рентгеновское и гамма-излучение), которые при взаимодействии с веществами могут образовывать в них ионы.

Альфа-излучение – это поток ядер гелия, который излучается веществом при радиоактивном распаде ядер с энергией, которая не превышает нескольких мегаэлектровольт (МеВ). Эти частички имеют высокую ионизирующую и низкую проникающую способность.

Бета-частички – это поток электронов и протонов. Проникающая способность (2,5 см в живых тканях и в воздухе – до 18 м) бета-частичек выше, а ионизирующая – ниже, чем у альфа-частичек.

Нейтроны вызывают ионизацию веществ и вторичное излучение, которое состоит из заряженных частичек и гамма-квантов. Проникающая способность зависит от энергии и от состава веществ, которые взаимодействуют.

Гамма-излучение – это электромагнитное (фотонное) излучение с большой проникающей и малой ионизирующей способностью с энергией 0,0013 МеВ.

Рентгеновское излучение – излучение, возникающее в среде, которая окружает источник бета-излучения, в ускорителях электронов и является совокупностью тормозного и характерного излучений, энергия фотонов которых не превышает 1 МеВ. Характерным называют фотонное излучение с дискретным спектром, который возникает при изменении энергетического состояния атома.

Тормозное излучение – это фотонное излучение с непрерывным спектром, которое возникает при изменении кинетической энергии заряженных частичек.

Степень биологического влияния ионизирующего излучения зависит от поглощения живой тканью энергии и ионизации молекул, которая возникает при этом.

Во время ионизации в организме возникает возбуждение молекул клеток. Это предопределяет разрыв молекулярных связей и образование новых химических связей, несвойственных здоровой ткани. Под влиянием ионизирующего излучения в организме нарушаются функции кроветворных органов, растет хрупкость и проницаемость сосудов, нарушается деятельность желудочно-кишечного тракта, снижается сопротивляемость организма, он истощается. Нормальные клетки перерождаются в злокачественные, возникают лейкоз, лучевая болезнь.

Нормирование осуществляется по санитарным правилам и нормативам СанПин 2.6.1.2523-09 «Нормы радиационной безопасности (НРБ-99/2009)». Устанавливаются дозовые пределы эквивалентной дозы для следующих категорий лиц:

  • персонал — лица, работающие с техногенными источниками излучения (группа А) или находящиеся по условиям работы в сфере их воздействия (группа Б);
  • все население, включая лиц из персонала, вне сферы и условий в их производственной деятельности.

Основные пределы доз и допустимые уровни облучения персонала группы Б равны четверти значений для персонала группы А.

Эффективная доза для персонала не должна превышать за период трудовой деятельности (50 лет) 1000 мЗв (миллизивертов), а для обычного населения за всю жизнь — 70 мЗв. Планируемое повышенное облучение допускается только для мужчин старше 30 лет при их добровольном письменном согласии после информирования о возможных дозах облучения и риске для здоровья.

 

 

Вопрос №46. Защита от ионизирующих излучений.

Защита от ионизирующих излучений может осуществляться путем использования следующих принципов:

· использование источников с минимальным излучением путем перехода на менее активные источники, уменьшение количества изотопа;

· сокращение времени работы с источником ионизирующего излучения;

· отдаление рабочего места от источника ионизирующего излучения;

· экранирование источника ионизирующего излучения.

Экраны могут быть передвижные или стационарные, предназначенные для поглощения или ослабления ионизирующего излучения. Экранами могут служить стенки контейнеров для перевозки радиоактивных изотопов, стенки сейфов для их хранения.

Альфа-частицы экранируются слоем воздуха толщиной несколько сантиметров, слоем стекла толщиной несколько миллиметров. Однако, работая с альфа-активными изотопами, необходимо также защищаться и от бета- и гамма-излучения.

С целью защиты от бета-излучения используются материалы с малой атомной массой. Для этого используют комбинированные экраны, в которых со стороны источника располагается материал с малой атомной массой толщиной, которая равна длине пробега бета-частиц, а за ним – с большей массой.

С целью защиты от рентгеновского и гамма-излучения применяются материалы с большой атомной массой и с высокой плотностью (свинец, вольфрам).

Для защиты от нейтронного излучения используют материалы, которые содержат водород (вода, парафин), а также бор, бериллий, кадмий, графит. Учитывая то, что нейтронные потоки сопровождаются гамма-излучением, следует использовать комбинированную защиту в виде слоистых экранов из тяжелых и легких материалов (свинец-полиэтилен).

Действенным защитным средством является использование дистанционного управления, манипуляторов, роботизированных комплексов.

В зависимости от характера выполняемых работ выбирают средства индивидуальной защиты: халаты и шапочки из хлопковой ткани, защитные передники, резиновые рукавицы, щитки, средства защиты органов дыхания (респиратор «Лепесток»), комбинезоны, пневмокостюмы, резиновые сапоги.

Действенной мерой обеспечения радиационной безопасности является дозиметрический контроль по уровням облучения персонала и по уровню радиации в окружающей среде.

Оценка радиационного состояния осуществляется при помощи приборов, принцип действия которых базируется на следующих методах:

· ионизационный (измерение степени ионизации среды);

· сцинтилляционный (измерение интенсивности световых вспышек, возникающих в веществах, которые люминесцируют при прохождении через них ионизирующих излучений);

· фотографический (измерение оптической плотности почернения
фотопластинки под действием излучения);

· калориметрические методы (измерение количества тепла, которое
выделяется в поглощающем веществе).

 

 

Вопрос №47. Электромагнитные неионизирующие излучения невидимой части спектра. Природа, характер действия на человека. Защита.

К невидимым частям спектра относятся ультрафиолетовое (УФ) и инфракрасное (ИК) излучения, которые также оказывают воздействие на человеческий организм. УФ-излучение располагается ниже видимой части спектра и может оказать серьезное отрицательное воздействие на здоровье человека. ИК-излучение располагается выше видимой части спектра и используется, главным образом, в качестве источника тепла.

Инфракрасное излучение (ИК) — часть электромагнитного спек­тра с длиной волны λ = 780 нм...1000 мкм, энергия которого при по­глощении в веществе вызывает тепловой эффект. С учетом особенно­стей биологического действия ИК-диапазон спектра подразделяют на три области: ИК-А (780...1400 нм), ИК-В (1400...3000 нм) и ИК-С (3000 нм...1000 мкм). Наиболее активно коротковолновое ИК-излучение, так как оно обладает наибольшей энергией фотонов, способно глубоко проникать в ткани организма и интенсивно поглощаться во­дой, содержащейся в тканях. Например, интенсивность 70 Вт/м2 при длине волны λ = 1500 нм уже дает повреждающий эффект вследствие специфического воздействия лучистой теплоты (в отличие от конвек­ционной) на структурные элементы клеток тканей, на белковые мо­лекулы с образованием биологически активных веществ.

Наиболее поражаемые у человека органы — кожный покров и ор­ганы зрения; при остром повреждении кожи возможны ожоги, резкое расширение артериокапилляров, усиление пигментации кожи; при хронических облучениях изменение пигментации может быть стой­ким, например эритемоподобный (красный) цвет лица у рабо­чих — стеклодувов, сталеваров. К острым нарушениям органа зрения относится ожог конъюнктивы, помутнение и ожог роговицы, ожог тканей передней камеры глаза. При остром интенсивном ИК-излучении (100 Вт/см2 для λ = 780... 1800 нм) и длительном облучении (0,08...0,4 Вт/см2) возможно образование катаракты. Коротковолно­вая часть ИК-излучения может фокусироваться на сетчатке, вызывая ее повреждение. ИК-излучение воздействует, в частности, на обмен­ные процессы в миокарде, водно-электролитный баланс в организме, на состояние верхних дыхательных путей (развитие хронического ла­рингита, ринита, синуситов), не исключается мутагенный эффект ИК-облучения.

Нормирование ИК-излучения осуществляется по интенсивности допустимых интегральных потоков излучения с учетом спектрально­го состава, размера облучаемой площади, защитных свойств спецоде­жды для продолжительности действия более 50 % смены в соответст­вии с ГОСТ 12.1.005—88 и Санитарными правилами и нормами СанПиН 2.2.4.548—96 «Гигиенические требования к микроклимату про­изводственных помещений».

Способами защиты от инфракрасных излучений являются: теплоизоляция горячих поверхностей, охлаждение теплоизлучающих поверхностей, удаление рабочего от источника теплового излучения (автоматизация и механизация производственных процессов, дистанционное управление), применение аэрации, воздушного душирования, экранирование источников излучения; применение кабин или поверхностей с радиационным охлаждением; использование СИЗ, в качестве которых применяются: спецодежда из хлопчатобумажной ткани с огнестойкой пропиткой; спецобувь для защиты от повышенных температур, защитные очки со стеклами-светофильтрами из желто-зеленого или синего стекла; рукавицы; защитные каски.

Интенсивность интегрального инфракрасного излучения измеряют актинометрами, а спектральную интенсивность излучения — инфракрасными спектрометрами ИКС-10, ИКС-12, ИКС-14 и др.

Ультрафиолетовое излучение (УФИ) — спектр электромагнитных колебаний с длиной волны 200...400 нм. По биологическому эффекту выделяют три области УФИ: УФВ — с длиной волны 400. ..315 нм, от­личается сравнительно слабым биологическим действием; УФВ — с длиной волны 315...280 нм, обладает выраженным загарным и анти­рахитическим действием; УФС — с длиной волны 280...200 нм, ак­тивно действует на тканевые белки и липиды, обладая выраженным бактерицидным действием.

Ультрафиолетовое излучение, составляющее приблизительно 5% плотности потока солнечного излучения,— жизненно необходимый фактор, оказывающий благотворное стимулирующее действие на ор­ганизм. Ультрафиолетовое облучение может понижать чувствитель­ность организма к некоторым вредным воздействиям вследствие уси­ления окислительных процессов в организме и более быстрого выве­дения вредных веществ из организма. Под воздействием УФИ опти­мальной плотности наблюдали более интенсивное выведение марганца, ртути, свинца; оптимальные дозы УФИ активизируют дея­тельность сердца, обмен веществ, повышают активность ферментов дыхания, улучшают кроветворение. Однако загрязнение атмосферы больших городов понижает ее прозрачность для УФИ, ограничивая его благотворное влияние на население.

Ультрафиолетовое излучение искусственных источников (напри­мер, электросварочных дуг, плазмотронов) может стать причиной острых и хронических профессиональных поражений. Наиболее уяз­вимы глаза, причем страдает преимущественно роговица и слизистая оболочка. Острые поражения глаз, так называемые электроофталь­мии, представляют собой острый конъюнктивит, или кератоконъюнктивит. Заболевание проявляется ощущением постороннего тела или песка в глазах, светобоязнью, слезотечением. Нередко наблюда­ется эритема кожи лица и век. К хроническим заболеваниям относят хронический конъюнктивит, блефарит, катаракту. Роговица глаза наиболее чувствительна к излучению волны длиной 270.. .280 нм; наи­большее воздействие на хрусталик оказывает излучение в диапазоне 295...320 нм. Возможность поражающего действия УФА на сетчатку невелика, однако не исключена.

Кожные поражения протекают в форме острых дерматитов с эри­темой, иногда отеком и образованием пузырей. Могут возникнуть об­щетоксические явления с повышением температуры, ознобом, го­ловными болями. На коже после интенсивного УФ-облучения разви­вается гиперпигментация и шелушение. Длительное воздействие УФ-лучей приводит к «старению» кожи, атрофии эпидермиса, воз­можно развитие злокачественных новообразований. При повторном воздействии УФИ имеет место кумуляция биологических эффектов.

В комбинации с химическими веществами УФИ приводит к фо­тосенсибилизации — повышенной чувствительности организма к свету с развитием фототоксических и фотоаллергических реакций. Фотоаллергия проявляется в виде экзематозных реакций, образова­ния узелково-папулезной сыпи на коже и слизистых. Фотоаллергия может приводить к стойкому повышению чувствительности организ­ма к УФИ даже в отсутствие фотосенсибилизатора. Канцерогенный эффект УФИ для кожи зависит от дозы регулярного УФ-облучения и некоторых других сопутствующих факторов (диеты, приема лекарст­венных препаратов, температуры кожи), малые дозы УФИ представ­ляют относительно небольшую опасность.

Гигиеническое нормирование УФИ в производственных помещени­ях осуществляется по СН 4557—88, которые устанавливают допусти­мые плотности потока излучения в зависимости от длины волн при условии защиты органов зрения и кожи.

Допустимая интенсивность УФ-облучения работающих при неза­щищенных участках поверхности кожи не более 0,2 м2 (лицо, шея, кисти рук и др.) общей продолжительностью воздействия излучения 50 % рабочей смены и длительности однократного облучения свы­ше 5 мин и более не должно превышать 10 Вт/м2 для области УФА и 0,01 Вт/м2 — для области УФВ. Излучение в области УФС при указан­ной продолжительности не допускается.

При использовании специальной одежды и средств защиты лица и рук, не пропускающих излучение (кожа, ткани с пленочным покры­тием и т. п.), допустимая интенсивность облучения в области УФВ + УФС (200...315 нм) не должна превышать 1 Вт/м2.

Меры защиты:

1. Экраниранирование источника УФИ.

2. Экраниранирование рабочих.

3. Спец. окраска помещений (серый, желтый,...).

4. Рациональное расположение раб. мест.

Средства индивид. защиты:

1. ткани: хлопок, лен,

2. спец.мази для защиты кожи,

3. очки с содержанием свинца.

Приборы контроля: радиометры, дозиметры.

 

Вопрос №48. Характеристика освещенности. Физические величины.

Существуют два источника света — Солнце и искусственные ис­точники, созданные человеком. Основные искусственные источни­ки света, применяемые ныне, — электрические источники, прежде всего лампы накаливания и газоразрядные лампы. Источник света излучает энергию в виде электромагнитных волн, имеющих различ­ную длину волны. Человек воспринимает электромагнитные волны как свет только в диапазоне от 0,38 до 0,76 мкм.

Освещение и световая среда характеризуется следующими пара­метрами.

Световой поток — часть электромагнитной энергии, которая излучается источником в видимом диапазоне. Поскольку световой поток — это не только физическая, но и физиологическая величи­на, т. к. характеризует зрительное восприятие, для него введена спе­циальная единица измерения люмен (лм).

Сила света. Так как источник света может излучать свет по различным направлениям неравномерно, вводится понятие силы света как отношения величины светового потока, распространяю­щегося от источника света в некотором телесном угле (измеряет­ся в стерадианах), к величине этого телесного угла

Сила света измеряется в канделах (кд).

Солнце и искусственные источники света — это первичные ис­точники светового потока, т. е. источники, в которых генерируется электромагнитная энергия. Однако существуют вторичные источни­ки — поверхности объектов, от которых свет отражается.

Коэффициентом отражения называется доля светового потока, падающего на поверхность, которая отражается от нее:

Величина же светового потока, отраженного поверх­ностью предмета и распространяющегося в некотором телесном угле, отнесенная к величине этого угла и площади отража­ющей поверхности, называется яркостью объекта.

Чем больше яркость объекта, тем больший световой поток от него поступает в глаз и тем сильнее сигнал, поступающий от глаза в зрительный центр. Таким образом, казалось бы, чем больше яр­кость, тем лучше человек видит объект. Однако это не совсем так. Если поверхность (фон), на которой располагается объект, имеет близкую по величине яркость, то интенсивность засветки участков сетчатки световым потоком, поступающим от фона и объекта, оди­накова (или слабо различается), величина поступающих в мозг сиг­налов одинакова, и объект на фоне становится неразличимым.

Для лучшей видимости объекта необходимо, чтобы яркости объ­екта и фона различались.

Если объект резко выделяется на фоне (например, черная линия на белом листе), контраст считается большим, при среднем контра­сте объект и фон заметно различаются по яркости, при малом конт­расте объект слабо заметен на фоне (например, линия бледно-жел­того цвета на белом листе). При К< 0,2 контраст считается малым, при К= 0,2...0,5 контраст средний, а при К> 0,5 — большим.

Величина яркости объекта тем больше, чем больше коэффици­ентотражения и падающий на поверхность световой поток.

Для характеристики интенсивности падающего на поверхность от источника света светового потока введена специальная величина, получившая название освещенности.

Освещенность — это отношение падающего на поверхность све­тового потока к величине площади этой поверхности.

Измеряется освещенность в люксах (лк), 1 лк = 1 лм/м2.

Таким образом, чем больше освещенность и контраст, тем луч­ше видно объект, а следовательно, меньше нагрузка на зрение. Сле­дует обратить внимание на то, что слишком большая яркость отри­цательно воздействует на зрение. Как правило, большая яркость связана не со слишком большой освещенностью, а с очень больши­ми коэффициентами отражения (например, зеркальным отражени­ем). При большой яркости имеет место очень интенсивная засветка сетчатки, и разлагающийся светочувствительный материал не успе­вает восстанавливаться (регенерироваться) — возникает явление ослепленности. Такое явление, например, возникает, если смотреть на раскаленную вольфрамовую нить лампы накаливания, обладаю­щей большой яркостью.

Одной из характеристик зрительной работы является фон— по­верхность, на которой происходит различение объекта. Фон харак­теризуется способностью поверхности отражать падающий на нее свет. Отражательная способность определяется коэффициентом от­ражения г. В зависимости от цвета и фактуры поверхности значения коэффициента отражения изменяются в широких пределах — 0,02...0,95. Фон считается светлым при г>0,4, средним при значе­ниях г в диапазоне 0,2...0,4 и темным при г< 0,2.

Важной характеристикой, от которой зависит требуемая осве­щенность на рабочем месте, является размер объекта различения.

Размер объекта различения— это минимальный размер наблюдаемо­го объекта (предмета), отдельной его части или дефекта, которые необходимо различать при выполнении работы. Например, при на­писании или чтении, чтобы видеть текст, необходимо различать толщину линии буквы — толщина линии и будет размером объекта различения при написании или чтении текста. Размер объекта раз­личения определяет характеристику работы и ее разряд.

Например, при размере объекта менее 0,15 мм разряд работы наивысшей точ­ности (I разряд), при размере 0,15...0,3 мм — разряд очень высокой точности (II разряд); от 0,3 до 0,5 мм — разряд высокой точности (III разряд) и т. д. При размере более 5 мм — грубая работа.

Очевидно, чем меньше размер объекта различения (выше разряд работы) и меньше контраст объекта различения с фоном, на кото­ром выполняется работа, тем больше требуется освещенность рабо­чего места, и наоборот.

 

Вопрос №49. Освещение как фактор БЖД, требования к качеству освещения на производстве.

Освещение исключительно важно для здоровья человека. С по­мощью зрения человек получает подавляющую часть информации (около 90 %), поступающей из окружающего мира.

Свет — это клю­чевой элемент нашей способности видеть, оценивать форму, цвет и перспективу окружающих нас предметов. Очень часто мы считаем это само собой разумеющимся. Однако мы не должны забывать, что такие элементы человеческого самочувствия, как душевное состоя­ние или степень усталости, зависят от освещения и цвета окружаю­щих нас предметов. С точки зрения безопасности труда зрительная способность и зрительный комфорт чрезвычайно важны. Очень много несчастных случаев происходит, помимо всего прочего, из-за неудовлетворительного освещения или из-за ошибок, сделанных ра­бочим, по причине трудности распознавания того или иного пред­мета или осознания степени риска, связанного с обслуживанием станков, транспортных средств, контейнеров и т. д. Свет создает нормальные условия для трудовой деятельности.

Нарушения зрения, связанные с недостатками системы освеще­ния, являются обычным явлением на рабочем месте. Благодаря способности зрения приспосабливаться к недостаточному освещению, к этим моментам иногда не относятся с должной серьезностью.

Недостаточное освещение вызывает зрительный дискомфорт, выражающийся в ощущении неудобства или напряженности. Длите­льное пребывание в условиях зрительного дискомфорта приводит к отвлечению внимания, уменьшению сосредоточенности, зрительно­му и общему утомлению. Кроме создания зрительного комфорта свет оказывает на человека психологическое, физиологическое и эс­тетическое воздействие. Свет — один из важнейших элементов ор­ганизации пространства и главный посредник между человеком и окружающим его миром. Неудовлетворительная освещенность в ра­бочей зоне может являться причиной снижения производительно­сти и качества труда, получения травм.

Свойства света как фактора эмоционального воздействия широ­ко используются путем правильной и рациональной организации освещения. Необходимая освещенность может быть достигнута за счет регулирования светового потока источника освещения, вклю­чения и выключения части ламп в осветительных приборах, измене­ния спектрального состава света, применения осветительных прибо­ров подвижной конструкции, позволяющей изменять направление светового потока.

Каждое производственное помещение имеет определенное назначение, поэтому устраиваемое в нем освещение должно учитывать характер возникающих зрительных задач.

1. Освещенность на рабочем месте должна соответствовать зрительному характеру работ/характеристике фона и контраста объекта с фоном. Согласно нормам (СНиП 23−05−95), все виды работ условно разбиты на 8 зрительных разрядов в зависимости от размера наименьшего различимого объекта:

1 «а» < 0.15 мм

2 «а»= 0.15...0.3 мм

3 «а» = 0.3...0.5 мм и т.д. до 8-го разряда и 4 разряда (а, б, в, г) в зависимости от сочетания фона и контраста.

Увеличение освещенности повышает яркость объектов, что улучшает их видимость и сказывается на росте производительности труда. Однако имеется предел, при котором дальнейшее увеличение освещенности не дает эффекта, поэтому необходимо улучшать качественные характеристики освещения.

2. Необходимо обеспечить достаточно равномерное распределение яркости на рабочем месте и в пределах окружающего пространства. Предпочтительнее использовать комбинированную систему естественного освещения или общее искусственное освещение. Светлая окраска потолка, стен и производственного оборудования способствует выполнению данного требования .

3. На рабочем месте должны отсутствовать резкие тени. Особенно недопустимы движущиеся тени, способствующие увеличению травматизма.

4. В поле зрения должна отсутствовать прямая и отраженная блесткость (приводящая к ослеплению зрения).

Показатель ослепленности (Р) — критерий оценки слепящего действия осветительной установки, характеризующий снижение видимости при наличии ярких источников света в поле зрения

где V1 и V2 — видимость соответственно при экранированных и открытых источниках света в поле зрения работающих.

Видимость (V) — определяется числом пороговых контрастов в действительном контрасте объекта с фоном Кдейств, характеризует способность глаза воспринимать объект

5. Величина освещенности должна быть постоянной во времени и равномерна по площади (Е(T) = const, E(S) = const). Коэффициент пульсации освещенности (Kn) — критерий оценки глубины колебаний светового потока газоразрядных ламп при питании с переменным током 50 Гц.

6. Следует выбрать оптимальную направленность светового потока, что позволяет, в одних случаях, рассмотреть внутренние поверхности деталей, в других — различить рельефность элементов рабочей поверхности. Оптимальный угол падения лучей = 60° к нормали поверхности, при этом видимый контраст объекта, с фоном максимален.

7. Следует рационально выбрать тип источника света (ламп) по спектральному составу для обеспечения правильной цветопередачи.

8. Все элементы осветительных установок — светильники, электропроводники, групповые щитки, трансформаторы и т.п. должны быть электробезопасными, а также не должны быть причиной возникновения пожара и взрыва.

9. Осветительная установка должна быть проста, надежна и удобна в эксплуатации.

Вопрос №50. Требования к производственному освещению, его классификация и нормирование.

Для того чтобы обеспечить условия, необходимые для зрительного комфорта, в сис­теме освещения должны быть реализованы следующие предварите­льные требования:

• однородное освещение;

• оптимальная яркость;

• отсутствие бликов;

• соответствующая контрастность;

• правильная цветовая гамма;

• отсутствие стробоскопического эффекта или мерцания света. Важно рассматривать свет на рабочем месте, руководствуясь не только количественными, но и качественными критериями. Пер­вым шагом здесь будет изучение рабочего места; точности, с кото­рой должны выполняться работы; объем работы; степень перемеще­ний рабочего при работе и т. д. Свет должен включать компоненты как рассеянного, так и прямого излучения. Результатом этой комби­нации должно стать тенеобразование большей или меньшей интен­сивности, которое должно позволить рабочему правильно воспри­нимать форму и положение предметов на рабочем месте. Раздража­ющие отражения, которые затрудняют восприятие деталей, должны быть устранены, так же как и чрезмерно яркий свет или глубокие тени.

Кроме требований хорошей освещенности рабочее место дол­жно иметь равномерную освещенность. Во всяком случае, не дол­жно быть значительной разницы в освещенности различных участ­ков рабочего места для того, чтобы не требовалось частой переадап­тации зрения. Например, поверхности книги и тетради, с которыми в данный момент осуществляется работа, должны иметь одинако­вую освещенность. Подсветка с помощью небольшого светильника только поверхности тетради приведет к различию в освещенности тетради и книги. Частое обращение к последней потребует постоян­ной адаптации зрения, что в конечном счете приведет к быстрому зрительному утомлению, снижению работоспособности, общему утомлению, психическому напряжению. Письменный стол должен располагаться в хорошо освещенном месте, желательно у окна. Че­ловек за письменным столом должен располагаться лицом или ле­вым боком к окну (для левшей — правым боком) для того, чтобы избежать образования тени от тела или руки человека. Светильник искусственного освещения должен располагаться относительно тела человека аналогичным образом. Светильники должны располагаться над рабочим местом вне запретного угла, равного 45°. Кроме того, конструкция светильника дол­жна исключать ослепление человека лучами, отраженными от рабочей поверхности. Для этого арматура светильника должна пред­усматривать направление прямых лу­чей, исходящих от источника, под иными углами, исключающими по­падание отраженного луча в глаз че­ловека.

Почему сильное различие в освещенности отдельных участков по­мещения или различных помещений может привести к травме?

При переходе из хорошо освещенного участка или помещения на плохо освещенный участок требуется некоторый промежуток времени для адаптации глаза к низкой освещенности. В этот период человек плохо видит. Это может привести к тому, что человек спот­кнется, упадет, наткнется на какой-либо предмет и т. д. и получит травму. Особенно большая опасность возникает при очень сильной разнице в освещенности — более чем 20...30 раз, что требует значи­тельного времени для глубокой переадаптации глаза, в течение ко­торого человек очень плохо видит или не видит вообще.

Поэтому, если освещенность в помещении и коридоре, в кото­рый осуществляется выход из помещения, сильно различается, не­обходимо улучшить освещение в коридоре. Для снижения вероятности получения травмы указанные выше обстоятельства особенно важно учитывать на лестничных клетках и других травмоопасных местах.

Обратите внимание на следующее:

• при большем контрасте требуется меньшая освещенность; по­этому на рабочем месте желательно обеспечить большой кон­траст между объектом и фоном, на котором расположен объ­ект; с темными предметами лучше работать на светлом фоне, а со светлыми — на темном фоне. Это позволит при меньшем значении освещенности успешно выполнять работу и снизить зрительное утомление;

• если изменить контраст объекта с фоном путем, например, изменения коэффициента отражения фона нельзя, необходи­мо увеличивать освещенность на рабочем месте;

• правильная организация освещения и условий для выполне­ния зрительных работ — залог сохранения хорошего зрения на долгие годы.

Освещение подразделяется на естественное, искусственное и со­вмещенное.

Естественное освещениеразделяется на боковое (световые прое­мы в стенах), верхнее (прозрачные перекрытия и световые фонари на крыше) и комбинированное (наличие световых проемов в стенах и перекрытиях одновременно). Величина освещенности Е в помещении от естественного света небосвода зависит от времени года, вре­мени дня, наличия облачности, а также доли светового потока Ф от небосвода, которая проникает в помещение.

Эта доля зависит от размера световых проемов (окон, световых фонарей); светопроница­емости стекол (сильно зависит от загрязненности стекол); наличия напротив световых проемов зданий, растительности; коэффициен­тов отражения стен и потолка помещения (в помещениях с более светлой окраской естественная освещенность лучше) и т. д.

Естественный свет лучше по своему спектральному составу, чем искусственный, создаваемый любыми источниками света. Кроме того, чем лучше естественная освещенность в помещении, тем ме­ньше времени приходится пользоваться искусственным светом, а это приводит к экономии электрической энергии.

При недостатке освещенности от естественного света используют ис­кусственное освещение,создаваемое электрическими источниками света. По своему конструктивному испол­нению искусственное освещение мо­жет быть общим, общим локализован­ным и комбинированным.

При общем освещении все места в помещении получают свет от общей осветительной установки. В этой си­стеме источники света распределены равномерно без учета расположения рабочих мест. Средний уровень осве­щения должен быть равен уровню освещения, требуемого для выполнения предстоящей работы. Эти системы используются главным образом на участках, где рабочие места не являются постоянными.

Такая система должна соответствовать трем фундаментальным требованиям. Прежде всего, она должна быть оснащена антиблико­выми приспособлениями (сетками, диффузорами, рефлекторами и т. д.). Второе требование заключается в том, что часть света должна быть направлена на потолок и на верхнюю часть стен. Третье требо­вание состоит в том, что источники света должны быть установлены как можно выше, чтобы свести ослепление до минимума и сделать освещение как можно более однородным.

Общая локализованная система освещенияпредназначена для уве­личения освещения посредством размещения ламп ближе к рабо­чим поверхностям. Светильники при таком освещении часто дают блики, и их рефлекторы должны быть расположены таким образом, чтобы они убирали источник света из прямого поля зрения работа­ющего. Например, они могут быть направлены вверх.

Комбинированное освещениенаряду с общим включает местное освещение (местный светильник, например настольная лампа), со­средотачивающее световой поток непосредственно на рабочем мес­те. Использование местного освещения совместно с общим реко­мендуется применять при высоких требованиях к освещенности.

Применение одного местного освещения недопустимо, т. к. воз­никает необходимость частой переадаптации зрения, создаются глубокие и резкие тени и другие неблагоприятные факторы. Поэтому доля общего освещения в комбинированном должна быть не менее 10 %:

Кроме естественного и искусственного освещения может при­меняться их сочетание, когда освещенности за счет естественного света недостаточно для выполнения той или иной работы. Такое освещение называется совмещенным.

Для выполнения работы наи­высшей, очень высокой и высокой точности в основном применяют совмещенное освещение, т. к. обычно естественной освещенности недостаточно.

Кроме того, искусственное освещение подразделяется на не­сколько видов: рабочее, аварийное, эвакуационное, дежурное, ох­ранное.

Рабочее освещениепредназначено для выполнения производст­венного процесса.

Аварийное освещение— для продолжения работы при аварийном отключении рабочего освещения. Для аварийного освещения испо­льзуются лампы накаливания, для которых применяется автономное питание электроэнергией. Светильники функционируют все время или автоматически включаются при аварийном отключении рабоче­го освещения.

Эвакуационное освещение— для эвакуации людей из помещения при аварийном отключении рабочего освещения. Для эвакуации людей уровень освещения основных проходов и запасных выходов должен составлять не менее 0,5 лк на уровне пола и 0,2 лк на от­крытых территориях.

Кроме минимально-допустимой величины КЕО и доли общего освещения в комбинированном освещении в соответствии с норма­ми устанавливается величина минимально-допустимой освещенно­сти (это основной нормируемый параметр). Величина зави­сит от разряда работы. Разряды работы делят на четыре подразряда в зависимости от светлоты фона и контраста между деталями (объ­ектами различения) и фоном.

При аттестации рабочих мест по параметрам освещённости используется государственный стандарт “ГОСТ 24940-96. Здания и сооружения. Методы измерения освещённости”.

Для гигиенической оценки освещения жилых и общественных зданий применяются санитарные правила и нормы «СанПиН 2.2.1/2.1.1.1278-03. Гигиенические требования к естественному, искусственному и совмещенному освещению жилых и общественных зданий».

 

 

Вопрос №51. Контроль освещенности.

В процессе эксплуатации электроосветительных установок происходит постепенное уменьшение освещенности рабочих мест по следующим причинам: старение источников света и выход их из строя, запыление и загрязнение светильников; старение светильников, т.е. ухудшение светотехнических характеристик их арматуры, не устраняемое путем очистки, ухудшение отражающих свойств поверхностей помещения. Уровень естественного освещения с течением времени также уменьшается вследствие загрязнения стекол и окон и световых фонарей и снижение отражающей способности стен, потолков и других частей помещения (особенно с большим выделением дыма, копоти). Поэтому требуется периодически производить контроль освещенности.

В соответствии с СанПиН 2.2.1/2.1.1.1278-03 "Гигиенические требования к естественному, искусственному освещению жилых и общественных зданий» замеры параметров освещения являются обязательными для всех помещений с постоянным пребыванием людей.

Данный контроль проводится 1 раз в год, а так же после ремонта или реконструкции помещений.

Замер освещенности проводится по следующим параметрам:

• Освещенность

• Коэффициент пульсации

• Коэффициент естественной освещенности

Для измерения освещенности на рабочих поверхностях применяют специальные приборы, показывающие измеряемую освещенность непосредственно в люксах и называемые люксметрами. Выпускаются несколько типов таких приборов. Наиболее широко в производственных условиях используется простой и портативный люксметр типа Ю-16, состоящий из датчика (селенового фотоэлемента) и стрелочного электроизмерительного прибора, шкалы которого градуированы на три предела измерения: 0-25,0 100 и 0 -500 лк.

Уровень освещенности промышленных зданий измеряется непосредственно на рабочих местах в рабочей зоне (в зоне резания и обработки деталей, на столах сборки, на шкалах приборов); в административно-конторских помещениях освещенность измеряется на рабочих местах, которыми являются рабочие столы, счетные и пишущие машины и т.д. В зависимости от характера производства и конструкции оборудования рабочая зона может находится в горизонтальной, вертикальной или наклонной плоскости. В помещениях, где работа может происходить в любой точке помещения или где вообще нет рабочих мест (фойе, зрительные залы), освещенность измеряется в горизонтальной плоскости на уровне 0,8 м от пола.

Контроль освещенности производится в сроки, зависящие от характера производства, но не реже 1 раза в год: значения освещенности на рабочих местах сравниваются с величинами, предусмотренными проектом или отраслевыми нормами искусственного освещения.

Чтобы не допускать снижения естественной освещенности, следует соблюдать сроки очистки остекления от загрязнения (не реже 2-4 раз в год в зависимости от вида и количества загрязнения, выделяющегося в помещение, и от чистоты наружного воздуха), а также выполнять требования по цветовой отделке интерьеров помещений.

Очень важной необходимой и трудоемкой частью работ, относящейся к контролю освещенности, является периодическая чистка колб ламп и отражающих, рассеивающих и других поверхностей и деталей светильников от накапливающихся на них пыли и грязи.

Освещенность на отдельных предприятиях, как показали исследования, в течение нескольких месяцев эксплуатации, если не производить очистку светильников , может снизится в 2-3 раза по сравнению с проектной.

Сохранение необходимых условий освещения, создаваемых осветительной установкой, в значительной степени зависит от своевременности замены источников света (как перегоревших ламп, так и продолжающих работать, но со значительно меньшим по сравнению с номинальным световым потоком).

В отечественной и зарубежной практике эксплуатации осветительных установок применяется два способа замены ламп: индивидуальный (лампы заменяются сразу же по мере старения) и групповой (замена всех ламп, установленных одновременно). Оба способа имеют свои достоинства и недостатки. На большинстве предприятий пищевой промышленности используется способ индивидуальной замены ламп.

Замена ртутных газоразрядных ламп (люминесцентных и ДРЛ) должна выполнятся с большой осторожностью. Надо следить, чтобы лампы не разбивались и не выливалась находящаяся в них ртуть. Пары ртути - сильный и опасный яд.

Вышедшие из строя газоразрядные лампы хранят в специальных помещениях (складах) в упаковочных коробках, а затем удаляют с территории объекта. Уровень освещенности и срок службы ламп, зависит от величины напряжения сети. Изменение напряжения сети на 1% от номинального приводит к изменению срока службы на ± 13%, светового потока - на ± 3,5%.

 

 

Вопрос №52. Что такое пожар? Условия возникновения пожара.

Пожар – неуправляемое, несанкционированное горение веществ, материалов и газовоздушных смесей вне специального очага, и приносящее значительный материальный ущерб, поражение людей на объектах и подвижном составе, которое подразделяется на наружное и внутреннее, открытое и скрытое;

– это горение веществ, характеризующееся существенными размерами распространения, высокими температурами и продолжительностью, представляющее опасность для людей.

Для того чтобы произошло возгорание, необходимо наличие трёх условий:

1. Горючие вещества и материалы

2. Источник зажигания – открытый огонь, химическая реакция, электроток.

3. Наличие окислителя, например кислорода воздуха.

Сущность горения заключается в следующем – нагревание источников зажигания горючего материала до начала его теплового разложения. В процессе теплового разложения образуется угарный газ, вода и большое количество тепла. Выделяется также углекислый газ и сажа, которая оседает на окружающем рельефе местности. Время от начала зажигания горючего материала до его воспламенения называет временем воспламенения.

С момента воспламенения начинается пожар.

 

Вопрос №53. Горючая среда, условия воспламенения в горючей среде.

Горючая среда – это среда, способная воспламеняться при воздействии источника зажигания. Горючая среда состоит из горючего вещества и окислителя. Окислителем обычно бывает кислород воздуха.

По горючести вещества и материалы подразделяются на три группы:

- негорючие (несгораемые) – вещества и материалы, неспособные к горению в воздухе;

- трудно горючие (трудно сгораемые) – вещества и материалы, способные возгораться в воздухе от источника зажигания, но не способные самостоятельно гореть после удаления источника зажигания;

- горючие (сгораемые) – вещества и материалы, способные самовозгораться, а также возгораться от источника зажигания и самостоятельно гореть после его удаления.

Возникновение и продолжение горения возможно при оп­ределенном количественном соотношении горючего вещества и кислорода, а также при определенной температуре и тепловой энергии источника воспламенения.

Абсолютное большинство горючих веществ независимо от их агрегатного состояния при нагревании переходят в паро- или газообразные продукты и, перемешиваясь с кислородом возду­ха, образуют горючую смесь, которая при дальнейшем нагрева­нии воспламеняется. Этот процесс воспламенения есть не что иное, как окисление составных частей газовой смеси, проте­кающее по цепной реакции.

Нагрев вещества до возникновения его горения может быть вызван различными источниками. Но во всех случаях теп­ловое воздействие источников сводится к нагреванию вещества до температуры воспламенения или температуры самовоспла­менения.

Температурой воспламенения называется та темпера­тура, до которой нужно нагреть вещество, его часть или поверх­ностный слой, обращенный к источнику воспламенения, чтобы оно загорелось от источника воспламенения и продолжало го­реть после его удаления.

Фактически горит не само вещество, а продукты его раз­ложения, выделяющиеся пары и газы в смеси с кислородом воз­духа.

Нагрев вещества или его поверхностного слоя до темпе­ратуры воспламенения необходим потому, что только при этом условии горючее вещество выделяет такое количество газов и паров пли продуктов разложения, которое не только образует с воздухом горючую смесь, но и может обеспечить устойчивое горение вещества до его полною сгорания.

Итак, для процесса горения необходимо наличие горючей среды и источника воспламенения.

Вопрос №54. Источники воспламенения.

Источник воспламенения (зажигания) – средство энергетического воздействия, инициирующее возникновение горения.

К источникам зажигания относятся:- электрический разряд;- источники нагревания поверхности оборудования и (или) его частей;- разряд статического электричества, наведенного на неметаллические оболочки оборудования и (или) его части;- фрикционное искрение при соударении оборудования и (или) его частей, изготовленных из материалов, содержащих легкие сплавы;- блуждающие электрические токи и катодная защита от коррозии;- удары молнии;- источники электромагнитных, ультразвуковых, оптических и ионизирующих излучений;- адиабатическое сжатие и ударные волны;- экзотермические реакции, включая самовоспламенение пыли.

 

Вопрос №55. Опасные факторы пожара.

Первичные опасные факторы пожара:

Опасными факторами пожара, вызывающими потерю соз­нания или смерть людей в реальных условиях пожара, являют­ся: прямой контакт с пламенем, высокая температура, недоста­ток кислорода (менее 14%), наличие в дыму окиси углерода (0,3%) и двуокиси углерода (6%) и других токсичных веществ, тепловое излучение (500 Вт/м ).

Задымление представляет опасность для людей за счет содержания в воздухе окиси углерода (СО). При концентрации СО в воздухе 0,2% возможно смертельное отравление в тече­ние 30-60 минут, а при концентрации 0,5-0,7% в течение не­скольких минут.

Задымление на открытой местности считается опасным, когда видимость не превышает 10 м. Следует помнить, что СО поступает в организм через дыхательные пути. Первые признаки отравления - боль в висках и лобной области, шум в ушах, по­темнение в глазах. Затем появляются мышечная слабость и го­ловокружение, затрудненное дыхание, тошнота, рвота, возбуж­дение (или оглушение), потеря сознания.

Наиболее опасны недостаток кислорода и наличие токсич­ных веществ, так как 50-60% смертей при пожарах происходит от отравления и удушья.

Опыт показывает, что в закрытых помещениях снижение концентрации кислорода в отдельных случаях возможно по ис­течении 1-2 минуты с начала возникновения пожара.

Особую опасность для жизни и здоровья людей на пожа­рах представляет воздействие на их организм дыма, содержа­щего газы токсичных продуктов горения и разложения веществ и материалов.

В некоторых случаях дым содержит фосген, сернистый газ, окись азота, синильную кислоту и другие газообразные токсич­ные вещества, кратковременное воздействие которых на орга­низм человека даже в небольших концентрациях (сернистый газ - 0,05%, окись азота - 0,025%, синильная кислота - 0,2%) при­водит к смертельному исходу.

Фосген -бесцветный газ, тяжелее воздуха, имеет запах гнилых фруктов.

Действуя на людей, фосген вызывает отек легких. У неко­торых людей появляется сладковатый, неприятный вкус во рту, может быть тошнота и рвота, а также жжение в носоглотке, на­рушение дыхания. Через 4-8 часов содержание кислорода в крови падает.

Сернистый ангидрид - бесцветный газ, который имеет сладковатый привкус и острый запах. Тяжелее воздуха. Образу­ет сернистую кислоту при взаимодействии с водой.

Сернистый ангидрид раздражает дыхательные пути, что сопровождается кашлем, болью в горле и груди, слезотечением. Может быть рвота, одышка, помутнение роговицы глаз. потеря сознания. При тяжелых отравлениях наступает смерть от уду­шья или остановки кровообращения в легких.

Цианистый водород -бесцветная жидкость с запахом миндаля.

Цианистый водород вызывает удушье. Быстрая форма от­равления характерна потерей сознания, судорогами, расстрой­ством дыхания и сердечной деятельности. Наступает потеря чувствительности и рефлексов, паралич сердца. Медленная форма протекания отравления цианистым водородом продол­жается несколько часов. При этом ощущается жгуче-горький привкус во рту, слюнотечение, жжение в горле и верхних дыха­тельных путях, головокружение, слабость.

Чрезвычайно высока потенциальная опасность продуктов горения синтетических полимерных материалов, с учетом того, что их в помещениях приблизительно 50% всех материалов.

Опасно для жизни людей также воздействие на них высо­кой температуры продуктов горения не только в горящем, но и в смежных с горящим помещениях. Превышение температуры нагретых газов над температурой человеческого тела приводит к тепловому удару. Уже при повышении температуры кожи чело­века до 42-46 градусов появляются болевые ощущения. Темпе­ратура окружающей среды 70-80 градусов является опасной для жизни человека, особенно при значительной влажности и вдыхании горячих газов, а при температуре выше 100 градусов происходит потеря сознания и смерть.

Не менее опасным, чем высокая температура, является воздействие теплового излучения на открытые поверхности те­ла человека.

Еще большей опасности подвергаются люди при непо­средственном воздействии пламени, например, когда огнем от­резало пути спасения. В некоторых случаях скорость распро­странения пожара может оказаться настолько высокой, что за­стигнутого пожаром человека спасти очень трудно или невоз­можно без специальной защиты (орошение водой, защитная одежда).

Наконец, большой опасностью при пожаре является пани­ка, представляющая собой внезапный, безотчетный, неудержи­мый страх, овладевающий массой людей. Она возникает от не­ожиданно появившейся опасности, сознание и воля подавляют­ся впечатлением от пожара.

Вторичные опасные факторы пожара:

• механическое воздействие от частей разрушившихся конструкций, установок;

• утечка радиационных и токсических веществ из разру­шившихся установок;

• электрический ток;

• опасные факторы взрыва.

Вопрос №56. Основные меры профилактики пожара.

Профилактика пожаров - совокупность превентивных мер, направленных на исключение возможности возникновения пожаров и ограничение их последствий;