Исследование линейных электрических цепей переменного тока.
Цель работы: экспериментально проверить выполнение законов Ома и Киргофа для цепей переменного тока, определить фазовые соотношения между напряжениями и токами в схеме.
В цепях переменного синусоидального тока кроме активных сопротивлений (резисторов) используются реактивные элементы: конденсаторы и индуктивности. В соответствии с законом Ома в дифференциальной форме для активного сопротивления R, индуктивности L и конденсатора С можно получить выражение для тока и напряжения на каждом виде элементов в цепях переменного тока
( i = Imsinωt):
для активного сопротивления R:
для индуктивности L:
для конденсатора С:
или если UC = Um sinωt, то
Отсюда следует, что в активном сопротивлении ток и напряжение совпадают по фазе, в индуктивности напряжение опережает ток на , в конденсаторе напряжение отстает от тока на .
При последовательном соединении R,L и С, когда через элементы цепи протекает один и тот же ток, падение напряжения на элементах цепи будут ориентированы относительно тока в соответствии с указанным выше, и поэтому второй закон Киргофа для цепей переменного тока рассматривается в векторной форме. При параллельном соединении R,L и C общей величиной для всех элементов является напряжение, а токи в ветвях будут ориентироваться относительно напряжения, поэтому первый закон Киргофа также выполняется в векторной форме.
В смешанных RC и RL цепях ток и напряжение сдвинуты друг относительно друга на угол меньше ,
или .
Для удобства определения фазовых соотношений в электрических цепях переменного тока используют комплексный метод расчета цепей, в котором положение векторов напряжения и тока представляется на комплексной плоскости. Для реализации полученных фазовых соотношений между напряжением и током на элементах схемы сопротивления последних выражают в комплексной форме:
(Умножение величины на j равносильно повороту вектора на + , на -j –на - ).
При использовании выражений для сопротивлений в комплексной форме для цепей переменного тока справедливы все методы расчета цепей постоянного тока. Отличие заключается лишь в том, что расчеты ведутся в комплексной форме, и каждый ток или напряжение на участке цепи выражается комплексным числом вида:
Обычно при расчетах цепей переменного тока одну величину (чаще всего напряжение источника питания цепи) направляют по действительной оси, т.е. начальная фаза этой величины принимается равной нулю, а все остальные полученные в ходе расчета величины будут иметь определенные фазы, т.е. характеризоваться определенным положением вектора на комплексной плоскости. Для каждой цепи переменного синусоидального тока можно построить векторную диаграмму, по которой можно судить о фазовых соотношениях между любыми соотношениями электрической цепи.