Пример 3.
Найти уравнение прямой, проходящей через точки А(1;2) и В(4;4) и ее угловой коэффициент.
Решение:
Используем уравнение (2.1.4): Подставим в него координаты точек А и В; ;
- угловой коэффициент.
Пример 4.
Найти уравнение и длину перпендикуляра, опущенного из точки С(1;2) на прямую 3х – 4у + 2 =0.
Решение:
Через точку С проведем пучок прямых(2.1.7):
Угловой коэффициент «к» найдем из условия перпендикулярности прямых , для чего прежде найдем угловой коэффициент заданной прямой.
тогда .
Подставим найденное значение в уравнение пучка прямых.
уравнение перпендикуляра.
Длину этого перпендикуляра найдем по формуле(2.1.7):
где
- координаты точки С.
В нашем случае это будет:
Пример 5.
Найти: а) уравнение медианы АЕ; б) прямой, проходящей через точку Е, параллельно стороне АВ в треугольнике с вершинами в точках А(-3;0),В(2;5) и С(4;3).
Решение:
а) Найдем координаты точки Е – середины отрезка ВС по формулам(2.1.3):
Е(3;4).
Уравнение медианы найдем, используя уравнение прямой, проходящей через две точки(2.1.4).
Подставим в него координаты точек А и Е:
.
б) Прежде, чем ответить на вопрос задачи, найдем уравнение стороны АВ, как прямой, проходящей через две точки. Затем через точку Е проведем пучок прямых, подчинив его условию параллельности прямых.
; .
Пучок прямых,. проходящих через точку Е: у-4=к (х-3).
Условие параллельности прямых . Подставим это значение «к» в уравнение пучка, у-4=х-3, или у=х+1.
Вопросы для самопроверки
1. Напишите формулы для вычисления расстояния между двумя точками и деления отрезка в данном отношении.
2. Как найти координаты середины отрезка?
3. Как найти угловой коэффициент прямой, если она задана общим уравнением?
4. Сформулируйте условия параллельности и перпендикулярности прямых.
5. Что представляет собой уравнение пучка прямых?
6. Напишите уравнение прямой, проходящей через две точки.
7. Как найти расстояние от точки до прямой?