Потенциал. Энергия системы электрических зарядов. Работа по перемещению заряда в поле

· Потенциал электрического поля есть величина, равная отношению потенциальной энергии точечного положительного заряда, помещенную в данную точку поля, к этому заряду

,

или потенциал электрического поля есть величина, равная отношению работы сил поля по перемещению точечного положительного заряда из данной точки поля в бесконечность к этому заряду:

.

Потенциал электрического поля в бесконечности условно принят равным нулю.

Отметим, что при перемещении заряда в электрическом поле работа Aв.с внешних сил равна по модулю работе Aс.п сил поля и противоположна ей по знаку:

Aв.с= – Aс.п.

· Потенциал электрического поля, создаваемый точечным зарядом Q на расстоянии rот заряда,

.

·Потенциал электрического поля, создаваемого металлической, несущей заряд Q сферой радиусом R, на расстоянии rот центра сферы:

внутри сферы (r<R) ;

на поверхности сферы (r=R) ;

вне сферы (r>R) .

Во всех приведенных для потенциала заряженной сферы формулах e есть диэлектрическая проницаемость однородного безграничного диэлектрика, окружающего сферу.

·Потенциал электрического поля, созданного системой п точечных зарядов, в данной точке в соответствии с принципом суперпозиции электрических полей равен алгебраическойсуммепотенциалов j1, j2, ... , jn, создаваемых отдельными точечными зарядами Q1, Q2, ..., Qn:

.

· Энергия W взаимодействия системы точечных зарядов Q1, Q2, ..., Qn определяется работой, которую эта система зарядов может совершить при удаленииих относительно друг друга в бесконечность, и выражается формулой

,

где — потенциал поля, создаваемого всеми п–1 зарядами (за исключением i-го) в точке, где расположен заряд Qi.

· Потенциал связан с напряженностью электрического поля соотношением

.

В случае электрического поля, обладающего сферической симметрией, эта связь выражается формулой

,

или в скалярной форме

,

а в случае однородного поля, т. е. поля, напряженность которого в каждой точке его одинакова как по модулю, так и по направлению

,

где j1 и j2 — потенциалы точек двух эквипотенциальных поверхностей; d – расстояние между этими поверхностями вдоль электрической силовой линии.

·Работа, совершаемая электрическим полем при перемещении точечного заряда Q из одной точки поля, имеющей потенциал j1, в другую, имеющую потенциал j2

A=Q ∙(j1 – j2), или

где El проекция вектора напряженности на направление перемещения; dl — перемещение.

В случае однородного поля последняя формула принимает вид

A=Q∙E∙l∙cosa,

где l — перемещение; a — угол между направлениями вектора и перемещения .

• Диполь есть система двух точечных электрических зарядов равных по размеру и противоположных по знаку, расстояние lме­жду которыми значительно меньше расстояния rот центра диполя до точек наблюдения.

Вектор проведенный от отрицательного заряда диполя к его положительному заряду, называется плечом диполя.

Произведение заряда |Q| диполя на его плечо называется электрическим моментом диполя:

.

· Напряженность поля диполя

или ,

где р - электрический момент диполя; r - модуль радиуса-вектора, проведенного от центра диполя к точке, напряженность поля в которой нас интересует; α- угол между радиусом-вектором и плечом диполя.

· Потенциал поля диполя

или

· Механический момент, действующий на диполь с электрическим моментом , помещенный в однородное электрическое поле с напряженностью

илиM=p∙E∙sin ,

где α- угол между направлениями векторов и .

В неоднородном электрическом поле кроме механического момента (пары сил) на диполь действует еще некоторая сила. В случае поля, обладающего симметрией относительно оси х,сила выражается соотношением

где - частная производная напряженности поля, характеризующая степень неоднородности поля в направлении оси х.

При сила Fхположительна. Это значит, что под действием ее диполь втягивается в область сильного поля.

• Потенциальная энергия диполя в электрическом поле