Понятие о двумерном нормальном законе распределения. Условные математические ожидания и дисперсии.
Распределение одной сл\в, входящей в систему, найденное при условии, что другая сл\в приняла определенное значение, называется условным законом распределения.
Усл закон распр можно задавать как функцией распределения так и плотностью распределения.
Усл плотность распределения вычисляется по формулам:
; . Усл плотность распр обладает всеми св-ми плотности распределения одной сл\в.
Условным м\о искретной сл\вY при X = x (х – определенное возможное значение Х) называется произведение всех возможных значений Y на их условные вероятности.
Для непрерывных сл\в: , где f(y/x) – усл плотность сл\в Y при X=x.
Усл м\о M(Y/x)=f(x) является функцией от х и называется функцией регрессии Х на Y.
Пример. Найти условное математическое ожидание составляющей Y при X= x1=1 для дискретной двумерной сл\в, заданной таблицей:
Y | X | |||
x1=1 | x2=3 | x3=4 | x4=8 | |
y1=3 | 0,15 | 0,06 | 0,25 | 0,04 |
y2=6 | 0,30 | 0,10 | 0,03 | 0,07 |
;
Аналогично определяются усл дисперсия и условные моменты системы сл\в.
28. Неравенство Маркова (лемма Чебышева) с док-вом для дискретной сл\величины. Пример.
Теорема.Если сл\в Х принимет только неотриц знач и имеет мат\о, то для любого положительного числа А верно неравенство: . Доказательство для дискретной сл\в Х:Расположим значения дискр сл\в Х в порядке возрастания, из кот часть значений будет не больше числаА, а др часть будут больше А, т.е
Запишем выражение для м\о M(X): , где
- в-ти т\ч сл\в Х примет значения . Отбрасывая первые k неотрицательных слагаемых получим: . Заменяя в этом неравенстве значения меньшим числом, получим неравенство: или . Сумма в-тей в левой части представляет сумму в-ей событий , т.е в-ть соб Х>А. Поэтому . Т.к события и противоположные, то заменяя выражением , придём к др форме неравенства Маркова: . Неравенство Маркова применимо к любым неотрицательным сл\в.
29. Неравенство Чебышева для средней арифметической сл\в. Теорема Чебышева с док-м и её значение и пример.
Теорема Чебышева(ср.арифм).Если дисперсии n независимых сл\в ограничены 1 и той же постоянной, то при неограниченном увеличении числа n ср арифметическая сл\величин сходится по в-ти к средней арифм их м\ожиданий , т.е или *(над стрелкой Ро-R)
Докажем ф-лу и выясним смысл формулировки «сходимость по в-ти». По условию , , где С - постоянное число. Получим неравенство Чебышева в форме ( ) для ср арифм сл\в , те для . Найдём м\о M(X) и оценку дисперсии D(X): ;
(здесь использованы свойства м\о и дисперсии и т\ч сл\в независимы, а след-но, дисперсия их суммы = сумме дисперсий)
Запишем неравенство для сл\в :
30. Теорема Чебышева с выводом и его частные случаи для сл\в, распределённой по биномиальному закону, и для частности события.
Неравенство Чебышева. Теорема. Для люб сл\в имеющей м\о и дисперсию, справедливо неравенство Чебышева: , где .
Применим неравенство Маркова в форме к сл\в , взяв в кач + числа . Получим: . Т.к неравенство равносильно неравенству , а есть дисперсия сл\в Х, то из неравенства получаем доказываемое . Учитывая, что события и противоположны, неравенство Чебышева можно записать и в форме: . Неравенство Чебышева применимо для любых сл\в. В форме оно устанавливает верхнюю границу, а в форме - нижнюю границу в-ти рассм-го события.
Запишем неравенство Чебышева в форме для некоторых сл\в:
А) для сл\в Х=m, имеющей биноминальный закон распр с м\о a=M(X)=np и дисперсией D(X)=npq.
;
Б) для частности m\n события в n независимых испытаниях, в каждом из кот оно может произойти с 1 и той же в-тью ;и имеющей дисперсию : .