Пищевые цепи и сети

 

Организмы разных трофических групп, связанные в процессе питания и передачи энергии от зеленых растений к фитофагам и хищникам, образуют пищевые цепи. На рис. 45 приведено пять примеров пищевых цепей. Две первые пищевые цепи представляют естественные экосистемы – наземные и водные. В наземной экосистеме цепь замыкают такие хищники, как лиса, волк, орел, питающийся мышами или сусликами. В водной экосистеме солнечная энергия, усвоенная в основном водорослями, переходит к мелким консументам – рачкам-дафниям, далее к мелким рыбам (плотва) и, наконец, к крупным хищникам – щуке, сому, судаку. Число звеньев пищевой цепи в наземных экосистемах – не более четырех, а в водных – может достигать шести.

В сельскохозяйственных экосистемах пищевая цепь может быть полной – при разведении сельскохозяйственных животных (третий пример), или укороченной, когда выращиваются растения, непосредственно использующиеся человеком в пищу (четвертый пример).

Наряду с цепями передачи энергии через живое органическое вещество (продуцент – консумент), называемыми пастбищными, существуют детритные пищевые цепи с участием детритофагов, использующих мертвое органическое вещество, и редуцентов. Эти цепи могут быть двух типов: «детритофаг – редуцент» и «детритофаг – хищник».

В первом случае мертвое органическое вещество, съеденное и преобразованное детритофагами, разрушается после их смерти редуцентами до минеральных соединении, которые поступают в почвенный раствор и повторно используются продуцентами. В разрушении этого вещества принимают участие разные организмы по принципу эстафеты. Например, при разрушении растительного опада, трупов или экскрементов животных работает целый конвейер из животных, грибов и бактерий.

Во втором случае детритофага съедает хищник, и вещества детрита, потребленного детритофагом, вовлекаются в круговорот, минуя стадию полного разрушения и потребления продуцентами. Например (пятая пищевая цепь), дождевой червь, питающийся опавшими листьями, будет съеден птицей. Личинки мухи-падальщицы, питающиеся на трупе животного, могут стать пищей травяной лягушки, которую, в свою очередь, съест уж.

Пищевые цепи «детритофаг – хищник» широко распространены в природе и используются в хозяйстве человека (откорм домашней птицы дождевыми червями или личинками мух). Пищевые цепи «детритофаг – редуцент» играют важную роль для повышения плодородия почв: запас питательных элементов в почвенном растворе должен быстро пополняться продуктами разложения детрита (в том числе и мертвых детритофагов).

Приведенные примеры упрощают действительную картину, так как одно и то же растение может быть съедено разными травоядными животными, а они, в свою очередь, стать жертвами разных хищников. Лист растения может съесть гусеница или слизень, гусеница может стать жертвой жука или насекомоядной птицы, которая может заодно склевать и самого жука. Жук может стать также жертвой паука. Поэтому в реальной природе складываются не пищевые цепи, а пищевые сети (рис. 46).

 

Контрольные вопросы

1. Что такое пищевая цепь?

2. Какие пищевые цепи вы знаете?

3. Как может участвовать в пищевых цепях детрит?

4. В каких пищевых цепях участвует человек?

 

(ДОП.) § 29. Бюджет солнечной энергии в экосистеме

 

На рис. 47 показано, как расходуется в экосистеме поступающая на поверхность планеты солнечная энергия. Количество этой энергии очень велико и составляет примерно 55 ккал на 1 см2 в год. Однако растения фиксируют не более 1–2% солнечной энергии (а в пустынях и в океане – сотые доли процента), остальное затрачивается на нагревание атмосферы, суши и испарение воды. Из накопленной растениями солнечной энергии сравнительно немного – не более 7–10% в наземных экосистемах и до 40% в водных – достается растительноядным животным, питающимся живыми растениями. Остальную ее часть используют симбиотрофы (бактерии и грибы), которые получают питание из корней растений, выделяющих в почву углеводы (или живут непосредственно в корне), и детритофаги и редуценты, питающиеся отмершими растениями.

С повышением трофического уровня одновременно растут и полнота выедания в живом состоянии, и усвоение энергии из потребленной пищи. Так, крупные хищники выедают до 70% своих жертв, а усвоение энергии при этом достигает 30-60%.

Таким образом, если большая часть биомассы растений (особенно в наземных экосистемах) потребляется детритофагами и редуцентами в отмершем состоянии, то основная часть биомассы животных (кроме крупных хищников, которые завершают пищевые цепи и не имеют естественных врагов) съедается в живом состоянии. Крупные хищники умирают от болезней, и их биомасса становится пищей детритофагов и редуцентов.

На снимках, сделанных из космоса, наземные экосистемы имеют зеленый цвет, а водные – голубой. Если бы фитофаги водных экосистем работали также «плохо», как в наземных, то водные экосистемы на космоснимках были бы тоже зелеными.

 

Контрольные вопросы

1. Какую часть солнечной энергии могут усвоить растения экосистемы в процессе фотосинтеза?

2. Какая часть солнечной энергии тратится на поддержание круговорота воды в биосфере?

3. Какова судьба солнечной энергии, зафиксированной растением в процессе фотосинтеза?

4. Какая часть биомассы растений съедается в живом состоянии в наземных и водных экосистемах?

5. Каковы закономерности перехода энергии по пищевым цепям с повышением трофического уровня?

 

Справочный материал

 

Для понимания процессов превращения энергии в экосистеме полезны законы термодинамики, которые сформулированы физиками.

Первый закон термодинамики гласит, что энергия не возникает и не исчезает, а только переходит из одной формы в другую. Поэтому энергия в экосистеме не может появиться сама собой, а поступает в нее извне – от Солнца или в результате химических реакций неорганических веществ. В гетеротрофные антропогенные экосистемы энергия поступает от специальных энергетических устройств, на которых получается электрическая энергия или с углеродистыми энергоносителями.

Второй закон термодинамики – о снижении качества энергии. При любом превращении энергии некоторое ее количество всегда переходит в менее качественную, менее полезную, энергию. Так, лишь часть поглощенной растением солнечной энергии расходуется на продукционный процесс, остальная рассеивается при дыхании в виде тепла. При переходе энергии с первого трофического уровня (продуцентов) на второй (фитофагов и симбиотрофов), третий (хищников первого порядка) и т.д. значительное ее количество также рассеивается и снижает свое качество.

В антропогенных экосистемах – сельскохозяйственных, городских, промышленных – человек стремится уменьшить бесполезное рассеивание дорогостоящей энергии.

В соответствии с законами термодинамики экосистема и входящие в ее состав организмы существуют до тех пор, пока поступает энергия извне. Однократное использование энергии, протекающей через экосистему (и круговорот веществ) – основной закон функционирования экосистемы

Понять действие законов термодинамики несложно на примерах-аналогиях. Так, для нагревания чайника с водой необходима энергия. Если для этого используется газовая плита, то при нагревании воды более качественная энергия газа переходит в тепловую, часть которой идет на нагревание воды, а часть рассеивается в окружающее пространство. Если газ выключить, то вода в чайнике начнет остывать, и так будет до тех пор, пока ее температура не сравняется с температурой окружающего воздуха. (Вот почему второй закон термодинамики называют еще «законом выравнивания энергии».)

 

(ДОП.) § 30. АККУМУЛЯЦИЯ ВЕЩЕСТВ ОРГАНИЗМАМИ

 

В экосистеме вещества, в отличие от энергии, используются многократно: после гибели организмов они возвращаются редуцентами в окружающую среду. Однако при прохождении веществ по «эстафетам» пищевых цепей концентрация некоторых из них повышается. Так, на этапе «растение – фитофаг» в несколько раз возрастает содержание азота и фосфора (последнего – особенно у рыб).

В то же время, есть вещества (как правило, из числа загрязняющих окружающую среду и не нужных для нормальной жизни организмов), концентрация которых при прохождении по пищевой цепи может возрастать в десятки и сотни раз. Этот процесс называется биологической аккумуляцией веществ.

На каждом следующем трофическом уровне концентрация этих веществ возрастает примерно в 10 раз. В итоге в тканях живых организмов их содержание может быть выше, чем в окружающей среде, в тысячи раз.

Так, концентрация свинца в организмах зоопланктона выше, чем в окружающей среде, в 300 раз, а у моллюсков бентоса – в 4000 раз. У полярных крачек концентрация может увеличиваться даже в 10 млн. раз. Концентраторами ртути являются рыбы, что может, при использовании их в пищу, стать причиной тяжелых заболеваний и даже смерти человека.

В промышленных городах нередко в результате биологической аккумуляции настолько повышается концентрация загрязняющих веществ в материнском молоке, что оно становится опасным для младенцев.

Организмы активно концентрируют радиоактивные изотопы, особенно опасно накопление изотопов с большим физическим периодом полураспада. Если принять содержание стронция-90 в воде за единицу, то в донных отложениях оно достигает 200, в водных растениях – 300, в тканях карповых рыб – 1000, в костях окуня – 3000, в костных тканях животных, питающихся рыбой, – 3900 единиц.

Способность организмов накапливать загрязняющие вещества следует учитывать при контроле загрязнения окружающей среды.

 

Контрольные вопросы

1. Какую опасность для человека представляет накопление в пищевых цепях загрязняющих веществ?

2. Почему в промышленных городах нередко рекомендуют вскармливать младенцев искусственными молочными смесями?

 

Справочный материал

 

Морские животные асцидии аккумулируют ванадий, его концентрация в теле животного может достигать 0,16%. В Японии этот редкий металл уже добывают из таких «живых месторождений». Активными накопителями металлов являются микроорганизмы.

Последствия отравления ртутью получили название «болезнь Минамата» – по названию бухты в Японии, где в 1953-1969 гг. произошло отравление рыбой, которая аккумулировала ртуть из сточных вод промышленных предприятий. У побережья Корсики в теле угрей содержание ртути достигает 600 мг на 1 кг. Развитие «болезни Минамата» возможно, если потребление угрей одним человеком составит 2 кг в неделю. Из-за высокого содержания ртути в воде Северного моря не рекомендуется есть выловленную там рыбу чаще двух раз в неделю. А рыбу из реки Рейн вообще не едят.

В последних звеньях пищевых цепей у позвоночных животных в костных и жировых тканях могут накапливаться токсичные органические соединения – бензо(а)пирен, диоксины. В тканях устриц, гагары и других животных содержание ДДТ может быть выше, чем в окружающей среде, в 50–100 тыс. раз. (Рис. 48).

Радиоактивные изотопы особенно активно концентрируются в грибах (особенно в масленках, моховиках и волнушках), некоторых видах птиц (утки) и рыб (линь, сом, вьюн). Это нужно учитывать при использовании продуктов питания, которые могут быть сильно загрязнены даже при невысоком радиоактивном загрязнении окружающей природной среды.

Биологическая аккумуляция радиоактивных изотопов человеком может происходить как при их попадании в организм с водой и воздухом, так и через посредников в пищевой цепи. Радиоактивный йод, к примеру, вначале усваивается растениями, затем попадает в молоко коров и после этого – в организм человека.

Разные радиоактивные вещества накапливаются в разных органах. Так, йод – в щитовидной железе; радон, уран, плутоний, криптон – в легких; сера – в коже; кобальт – в печени; калий и цезий – в мышцах; полоний – в селезенке; рутений – в почках. Практически все радиоактивные элементы накапливаются в костях и печени.