Задания для подготовки к практическому занятию

Прочитайте §5 лекций и предложенные примеры. Ответьте письменно на вопросы и решите задачи.

Примеры.

Даны точки: А(1;0), В(3;1), С(2;5)

1. Найти координаты векторов .

Решение: Для того, чтобы найти координаты вектора, следует из координат конца вектора (вторая указанная в его названии точка) вычесть координаты начала (первая точка):

; ;

2. Найти четвертую вершину параллелограмма ABCD.

Решение: Для того, чтобы четырехугольник АВСD был параллелограммом, необходимо и достаточно, чтобы противолежащие стороны были параллельны и равны по длине. Иными словами, векторы, образующие противолежащие стороны, должны быть равны: . Для этого должны быть равны координаты этих векторов: ,

следовательно, , откуда .

Таким образом, искомая точка D(0;4)

Даны векторы: .

3. Найти скалярное произведение векторов и ,

Решение: Найдем координаты указанных векторов:

,

.

Воспользуемся координатным выражением скалярного произведения векторов:

4. Найти векторное произведение векторов и ,

Решение: Воспользуемся координатным выражением векторного произведения векторов:

.

Таким образом,

5. Найти стороны и углы треугольника, образованного данными векторами, отложенными из одной точки.

Решение: Стороны треугольника как длины образующих его векторов можно найти, зная координаты этих векторов. Найдем предварительно координаты вектора , образующего третью сторону треугольника. По правилу вычитания векторов, . Теперь воспользуемся координатным выражением модуля вектора:

, ,

.

Далее, угол между векторами, зная их координаты, мы можем найти при помощи скалярного произведения.

Угол А треугольника образован векторами , следовательно,

.

Угол В образован векторами , следовательно,

.

Угол С образован векторами , следовательно,

(этот угол тупой).

6. Найти площадь этого треугольника.

Решение: Есть несколько способов найти площадь треугольника, мы воспользуемся способом, связанным с векторами, а именно – геометрическим смыслом векторного произведения. Согласно ему, площадь треугольника АВС равна половине модулю векторного произведения векторов .

Векторное произведение векторов равно

.

Модуль найденного векторного произведения равен

.

Следовательно, площадь треугольника АВС равна