Геометрическая прогрессия

Определение: Последовательность, у которой задан первый член b1 ¹ 0, а каждый следующий равен предыдущему, умноженному на одно и то же число q ¹ 0, называется геометрической прогрессией:

bn+1 = bn q, где q – знаменатель прогрессии.

Деление с остатком

Формула деления с остатком: n = m×k + r,

где n – делимое, m - делитель, k - частное, r – остаток: 0 £ r < m

Любое число можно представить в виде:

n = 2k + r, где r = {0; 1}

или n = 4k + r, где r = {0; 1; 2; 3}