Геометрическая прогрессия
Определение: Последовательность, у которой задан первый член b1 ¹ 0, а каждый следующий равен предыдущему, умноженному на одно и то же число q ¹ 0, называется геометрической прогрессией:
bn+1 = bn q, где q – знаменатель прогрессии.
Деление с остатком
Формула деления с остатком: n = m×k + r,
где n – делимое, m - делитель, k - частное, r – остаток: 0 £ r < m
Любое число можно представить в виде:
n = 2k + r, где r = {0; 1}
или n = 4k + r, где r = {0; 1; 2; 3}