Классификация сигналов. Спектр сигнала. Дискретный непрерывный спектр.

Типичным для радиотехники сигналом является напряжение на зажимах какой-либо цепи или ток в ветви.

Такой сигнал, описываемый одной функцией времени, принято называть одномерным. В этой книге чаще всего будут изучаться одномерные сигналы. Однако иногда удобно вводить в рассмотрение многомерные, или векторные, сигналы вида

образованные некоторым множеством одномерных сигналов. Целое число N называют размерностью такого сигнала (терминология заимствована из линейной алгебры).

Многомерным сигналом служит, например, система напряжений на зажимах многополюсника.

Отметим, что многомерный сигнал — упорядоченная совокупность одномерных сигналов. Поэтому в общем случае сигналы с различным порядком следования компонент не равны друг другу:

Многомерные модели сигналов особенно полезны в тех случаях, когда функционирование сложных систем анализируется с помощью ЭВМ.

Спектр сигнала

Базисные функции

В радиотехнике в качестве базисных функций используют синусоидальные функции. Это объясняется рядом причин:

· функции , являются простыми и определены при всех значениях t, являются ортогональными и составляют полный набор при кратном уменьшении периода;

· гармоническое колебание является единственной функцией времени, сохраняющей свою форму при прохождении колебания через линейную систему с постоянными параметрами, могут только изменяться амплитуда и фаза;

· для гармонических функций имеется математический аппарат комплексного анализа;

· гармоническое колебание легко реализуемо на практике

Непрерывные и дискретные спектры

Видимый белый свет, таким образом, является сочетанием различных длин волны от 400 до 700 нм. Когда глаза достигает волны с одинаковой длиной, мы видим цвет. Комбинация всех длин волны воздействует на три типа светочувствительных рецепторов глаза, что дает восприятие того, что мы называем «белым». Светящиеся твердые тела и жидкости (т.е. те тела, которые находятся в жидком состоянии при температуре свечения) испускают излучение со всеми длинами волн, из которых глаз воспринимает видимую часть. Газы с высокой степенью сжатия действуют схожим образом.
Прохождение света от теплового излучателя через призму дает непрерывный спектр. Цвета: фиолетовый, синий, зеленый, желтый, оранжевый, красный и темнокрасный смешиваются между собой без разрывов в диапазоне длин волны. В фотографии излучение, не видимое глазом — излучение с большими длинами волны (выше 750 нм — инфракрасное) и с меньшими (ниже 400 нм — ультрафиолетовое) — имеют почти такое же значение, как и видимая часть спектра.
Люминесцентные лампы вырабатывают свет совершенно другим образом, без нагревания. Здесь электрическая энергия сначала превращается в кинетическую. Быстро движущиеся частицы, обладающие электрическим зарядом — ионы газа и электроны, вырабатывают кванты энергии при столкновении. При этом кинетическая энергия преобразуется в электромагнитное излучение.
В знакомых нам люминесцентных лампах фотоны невидимого коротковолнового излучения ударяются о люминесцирующий порошок, которым покрыта внутренняя поверхность колбы. Кванты фотонов возбуждают атомы этого покрытия, заставляя их испускать видимое свечение с большей длиной волны.
Определенные газы, такие как неон, гелий или водород сами излучают свет в разрядной трубке. Если пропустить свет, выработанный газоразрядной лампой, через призму, то получившийся спектр уже не будет непрерывным, а будет состоять из ряда спектральных линий, это — дискретный спектр. Причиной разницы между излучением с непрерывным и дискретным спектрами является то, что в твердых и жидких телах атомная структура более плотная, чем в газе, поэтому фотонное излучение атомов пересекается. Твердые и жидкие тепловые излучатели также вырабатывают спектральные линии, но они находятся так близко друг к другу, что пересекаются и поэтому кажутся непрерывными.