Интересующие социолога закономерности как формулы узкого исчисления предикатов

Итак, представим себе типичную для социолога ситуацию: он осуществил опрос и перед ним лежит тысяча (может быть, не одна) анкет с ответами респондентов. Каждый ответивший характеризуется набором чисел – ответов, или, как обычно говорят, значений рассматриваемых признаков (признак соответствует вопросу).

Продолжая приведенные выше рассуждения, позволившие выразить интересующие социолога статистические закономерности (или, что для нас то же самое – результаты, получаемые с помощью известных методов анализа номинальных данных) в терминах исчисления высказываний, нетрудно придти к выводу, что более общие закономерности, в неменьшей мере важные для социолога, часто бывает возможно выразить в языке узкого исчисления предикатов. Эти закономерности означают истинность определённых формул в этом исчислении.

Приведем примеры упомянутых формул. Пусть, например, предикат (предикатная константа) P(x) означает “респондент x отметил 5-е значение 8-го признака”, предикат Q (y) - “респондент y отметил 3-е значение 14-го признака”, а предикат R(z) - “респондент z отметил 1-е значение 2-го признака. Тогда приведённое выше утверждение “ 5-е значение 8-го признака, как правило, встречается либо с 3-м значением 14-го, либо с 1-м значением 2-го” будет означать, что почти для всех x будет истинной формула (P(x) & (Q(x)Ú R(x))).

Теперь предположим, что P(x) означает “респонденту x отвечает 2-е значение 3-го признака”, Q(x) – “ респонденту отвечает 5-е значение 4-го признака, R(x) – предикат “значение 6-го признака для респондента x равно или 2, или 3”. Тогда выражение “из того, что 3-й признак принимает 2-е значение одновременно с тем, что 4-й принимает 5-е значение, как правило, следует, что 6-й признак принимает либо 2-е, либо 3-е”,” и т.д. означает, что почти для всех x будет истинно выражение ((P(x) & Q(x))É R(x)).

Пусть S(x) – “значение 23-го признака для респондента x равно 2”, T(x) – “значение 7-го признака для респондента x равно 4”. Тогда утверждение “из того, что 23-й признак принимает какое-либо значение, кроме 2-го, следует, что 7-й признак принимает 4-е значение” будет эквивалентно утверждению истинности формулы (Ø(S(x)) É T(x)).

Нетрудно видеть, что таким образом в виде формул узкого исчисления предикатов действительно можно выразить очень многие интересующие социолога “закономерности”, “скрывающиеся” в эмпирических данных. А если учесть, что большинство методов анализа номинальных данных, как было показано в предыдущих параграфах, позволяет выявлять “закономерности” именно такого вида, то можно сказать, что практически все интересующие социолога закономерности выражаются на языке формул исчисления предикатов первого порядка.

Итак, наиболее типичной задачей, решающейся на основе анализа такого рода данных можно считать следующую: найти логическую функцию от значений признаков (выступающих в качестве предикатов), истинную для изучаемой совокупности респондентов. Получаемые выводы (найденные закономерности) могут иметь, например, такой вид (используем обычную логическую символику, логические связки соединяют записанные в неформальном виде значения рассматриваемых предикатов-признаков): "(((Проживающий в крупном городе) & (мужчина-предприниматель) & (старше 40 лет)) Ú ((пенсионер) & (имеющий высшее экономическое образование))) É (собирается голосовать на ближайших выборах за кандидата N)".

Очевидно сходство такой постановки задачи с тем, что было обсуждено выше в п.п. 2.4.2, 2.5.3 и 2.5.4.

Теория измерений позволяет существенно повысить эффективность решения задачи поиска закономерностей описанного вида. Суть соответствующего подхода заключается в том, что упомянутые логические функции считаются аксиомами, задающими изучаемую ЭС (ей отвечает МС – фрагмент многомерного пространства). Разработаны способы внесения в определение и ЭС, и МС вероятностных характеристик. Предложены алгоритмы поиска таких аксиом. Рассмотрим соответствующий процесс более подробно.