Химические свойства

1. Взаимодействие с водой. Важное свойство щелочных металлов — их высокая активность по отношению к воде. Наиболее спокойно (без взрыва) реагирует с водой литий:

При проведении аналогичной реакции натрий горит жёлтым пламенем и происходит небольшой взрыв. Калий ещё более активен: в этом случае взрыв гораздо сильнее, а пламя окрашено в фиолетовый цвет.

 

2. Взаимодействие с кислородом. Продукты горения щелочных металлов на воздухе имеют разный состав в зависимости от активности металла.

Только литий сгорает на воздухе с образованием оксида стехиометрического состава:

При горении натрия в основном образуется пероксид Na2O2 с небольшой примесью надпероксида NaO2:

В продуктах горения калия, рубидия и цезия содержатся в основном надпероксиды:

Для получения оксидов натрия и калия нагревают смеси гидроксида, пероксида или надпероксида с избытком металла в отсутствие кислорода:

реакция протекает без нагревания. В случае с Li, в реакции образуется в основном оксид и немного пероксида, а в случае с Na – наоборот. При взаимодействии K, Rb и Cs с кислородом основным продуктом реакции является супероксид.

Среди пероксидов щелочных металлов наибольшее применение находит пероксид натрия:

- сильный окислитель, используется при отбелке тканей.

-реакция регенерации воздуха в закрытых помещениях.

Гидроксиды щелочных металлов.Это бесцветные твердые вещества, хорошо растворимые в воде, гигироскопичные. Химически активные, плавящиеся без разложения, за исключением:

В ряду гидроксидов от LiOH к CsOH возрастает радиус атома щелочного металла, и, как следствие уменьшается прочность связи Ме О, что приводит к увеличению основных свойств.

-взаимодействие с оксидами неметаллов.

- используется для получения алюминия.

Взаимодействие с галогенами:

Взаимодействие с кислотами:

- эти реакции используются для получения солей.

Соли щелочных металлов и их применение.Почти все соли щелочных металлов хорошо растворимы в воде. Трудно растворимы в основном соли лития (карбонат, фосфат и фторид), а также: LiAl(SiO3)2 – сподумен, LiAl(PO4)F – амблигонит, NaAlSi3O8– альбит, KalSi3O8– ортоклаз (полевые шпаты) и др.

Известны и встречаются в природе и другие соли щелочных металлов: NaCl – галит, KCl – сильвит. NaNO3– чилийская селитра, KNO3 – индийская селитра (эти нитраты широко используются в сельском хозяйстве), Na2SO4, K2SO4 – тенардит, Na2CO3*10H2O – гидратированная сода (карбонаты используют для получения стекла), Na2SO4*12H2O – мирабилит, Na2SO4*10H2O – глауберова соль, Na2SiO3 – жидкое стекло, Na3PO4 – добавляют в вино для стабилизации, в стиральные порошки, и, вообще, широко используют в промышленности, KNaC4H4O6*4H2O – сегнетова соль (сегнетоэлектрик).

 

Литий. Диагональное сходство лития с магнием. Особенности строения атома лития. Химические свойства и отличительные особенности химического поведения лития. Отличительные особенности термической устойчивости и химического поведения соединений лития по сравнению с однотипными соединениями других щелочных металлов.

Литий Li от остальных щелочных металлов отличает большее значение энергии ионизации и небольшой размер атома и иона. Литий по свойствам напоминает магний (диагональное сходство в периодической системе).

Для лития наиболее характерно образование ионной связи. Поэтому координационное число Li в соединениях в отличие от остальных элементов 2-го периода больше 4. Вместе с тем вследствие небольшого размера ион лития характеризуется высокой энергией сольватации, а в литийорганических соединениях литий образует ковалентную связь.

В виде простого вещества литий — мягкий серебристо-белый металл. Из металлов он самый легкий. Литий высоко химически активен. С кислородом и азотом взаимодействует уже при обычных условиях, поэтому на воздухе тотчас окисляется, образуя темно-серый налет продуктов взаимодействия (Li2О, Li3N). При температуре выше 200 °С загорается. В атмосфере фтора и хлора, а также в парах брома и иода самовоспламеняется при обычных условиях. При нагревании непосредственно соединяется с серой, углем, водородом и другими неметаллами. Будучи накален, горит в СО2.

С металлами литий образует интерметаллические соединения. С магнием, алюминием, цинком и с некоторыми другими металлами, кроме того, образует ограниченные твердые растворы. Заметно отличаясь атомным радиусом от остальных щелочных металлов, дает с ними эвтектические смеси. Литий придает сплавам ряд ценных физико-химических свойств. Например, у сплавов алюминия с содержанием до 1 % Li повышается механическая прочность и коррозионная стойкость, введение 2% Li в техническую медь значительно увеличивает ее электрическую проводимость и т. д.

При комнатной температуре металлический литий имеет кубическую объёмно-центрированную решётку (координационное число 8), которая при холодной обработке переходит в кубическую плотноупакованную решётку, где каждый атом, имеющий двойную кубооктаэдрическую координацию, окружён 12 другими. Ниже 78 К устойчивой кристаллической формой является гексагональная плотноупакованная структура, в которой каждый атом лития имеет 12 ближайших соседей, расположенных в вершинах кубооктаэдра. Из всех щелочных металлов литий характеризуется самыми высокими температурами плавления и кипения (180,54 и 1340 °C, соответственно), у него самая низкая плотность при комнатной температуре среди всех металлов (0,533 г/смі, почти в два раза меньше плотности воды).

Маленькие размеры атома лития приводят к появлению особых свойств металла. Например, он смешивается с натрием только при температуре ниже 380° С и не смешивается с расплавленными калием, рубидием и цезием, в то время как другие па́ры щелочных металлов смешиваются друг с другом в любых соотношениях.

Щелочной металл, неустойчив на воздухе. Литий является наименее активным щелочным металлом, с сухим воздухом (и даже с сухим кислородом) при комнатной температуре практически не реагирует. Во влажном воздухе медленно окисляется, превращаясь в нитрид Li3N, гидроксид LiOH и карбонат Li2CO3. В кислороде при нагревании горит, превращаясь в оксид Li2O. Есть интересная особенность, что в интервале температур от 100 °С до 300 °С литий покрывается плотной оксидной плёнкой, и в дальнейшем не окисляется.

Химические свойства. Из-за небольшого радиуса и маленького ионного заряда литий по своим свойствам больше всего напоминает не другие щелочные металлы, а элемент группы IIA магний (Mg). Литий химически очень активен. Он способен взаимодействовать с кислородом (O) и азотом (N) воздуха при обычных условиях, поэтому на воздухе он быстро окисляется с образованием темного налета продуктов взаимодействия:

4Li + O2 = 2Li2O,

6Li + N2 = 2Li3N

При контактах с галогенами литий самовоспламеняется при обычных условиях. Подобно магнию (Mg), нагретый литий способен гореть в CO2:

4Li + CO2 = C + 2Li2O

Стандартный электродный потенциал Li/Li+ имеет наибольшее отрицательное значение (E°298 = –3,05 B) по сравнению со стандартными электродными потенциалами других металлов. Это обусловлено большой энергией гидратации маленького иона Li+, что значительно смещает равновесие в сторону ионизации металла:

Li-твердый <> Li + раствор + e–

Для слабо сольватирующих растворителей значение электродного потенциала лития соответствует его меньшей химической активности в ряду щелочных металлов.

При взаимодействии (совместной кристаллизации или сплавлении) солей лития с однотипными соединениями других щелочных металлов образуются эвтектические смеси, например LiNО3 – КNО3 (T пл. 132 °С), LiNO3 — NаNO3 – KNO3 (Tпл. 120 °С), LiСl — КСl (Tпл. 350 °С) и др. Значительно реже образуются двойные соединения, например М1+LiSО4, Nа3Li(SО4)2×6Н2O, и твердые растворы.

Расплавы солей и их смесей составляют интересный и важный класс неводных растворителей. В расплавленных солях растворяется большинство металлов. Эти растворы имеют интенсивную окраску и являются очень сильными восстановителями. В них растворенные металлы находятся либо в атомарном состоянии, либо в виде сольватированных ионов необычно низкой степени окисления (Аl+, Са+, Ве+). Растворение металлов в расплавленных солях имеет значение для многих электрометаллургических и металлотермических процессов, для рафинирования металлов, проведения различных синтезов.

Соединения, растворяясь в расплавленных солях, ионизируются, образуя сольватированные ноны. Например, при растворении СоСl в расплавленной эвтектике LiNО3—КNО3 образуется сольватированный ион [Со(NО3)6]4-, а при добавлении к этому раствору КСl получается ион [СоСl4]2-. В расплавленных солях могут протекать реакции как без изменения, так и с изменением степени окисления элементов.

 

Общая характеристика s-элементов IIA подгруппы. Строение атомов. Распро-странённость и формы нахождения в природе. Физические и химические свойства метал-лов. Особенности бериллия. Амфотерность гидроксида бериллия. Соли бериллия в кати-онной и анионной формах. Комплексные соединения бериллия. Токсичность соединений бериллия.

Во IIA группу входят бериллий, магний, кальций, стронций, барий и радий. Последние четыре элемента имеют групповое название – щелочноземельные элементы.

В земной коре наиболее распространены четыре из этих тринадцати элементов: Na (w =2,63 %), K (w = 2,41 %), Mg (w = 1,95 %) и Ca (w = 3,38 %). Остальные встречаются значительно реже, а франций вообще не встречается.

Орбитальные радиусы атомов этих элементов (кроме водорода) изменяются от 1,04 А (у бериллия) до 2,52 А (у цезия), то есть у всех атомов превышают 1 ангстрем. Это приводит к тому, что все эти элементы представляют собой элементы, образующие истинные металлы, а бериллий – элемент, образующий амфотерный металл. Общая валентная электронная формула элементов IA группы – ns1, а элементов IIА группы – ns2.

Большие размеры атомов и незначительное число валентных электронов приводят к тому, что атомы этих элементов (кроме бериллия) склонны отдавать свои валентные электроны. Наиболее легко отдают свои валентные электроны атомы элементов IА группы, при этом из атомов щелочных элементов образуются однозарядные катионы, а из атомов щелочноземельных элементов и магния – двухзарядные катионы. Степени окисления в соединениях у щелочных элементов +1, а у элементов IIA группы +2.

Простые вещества, образуемые атомами этих элементов, – металлы. Литий, натрий, калий, рубидий, цезий и франций называют щелочными металлами, так как их гидроксиды представляют собой щелочи. Кальций, стронций и барий называют щелочноземельными металлами. Химическая активность этих веществ увеличивается по мере увеличения атомного радиуса.

Из химических свойств этих металлов наиболее важны их восстановительные свойства. Щелочные металлы – сильнейшие восстановители. Металлы элементов IIA группы также довольно сильные восстановители.

Атом (от греческого atomos - неделимый) — одноядерная, неделимая частица химического элемента, носитель свойства вещества. Вещества состоят из атомов. Сам атом состоит из положительно заряженного ядра и отрицательно заряженного электронного облака. В целом атом электронейтрален. Размер атома полностью определяется размером его электронного облака, поскольку размер ядра ничтожно мал по сравнению с размером электронного облака. Ядро состоит из Z положительно заряженных протонов (заряд протона соответствует +1 в условных единицах) и N нейтронов, которые не несут на себе заряда (протоны и нейтроны называют нуклонами). Таким образом, заряд ядра определятся только количеством протонов и равен порядковому номеру элемента в таблице Менделеева. Положительный заряд ядра компенсируется отрицательно заряженными электронами (заряд электрона -1 в условных единицах), которые формируют электронное облако. Количество электронов равно количеству протонов. Массы протонов и нейтронов равны (соответственно 1 и 1 а.е.м.). Масса атома определятся массой его ядра, поскольку масса электрона примерно в 1850 раз меньше массы протона и нейтрона и в расчетах редко учитывается. Количество нейтронов можно узнать по разности между массой атома и количеством протонов (N=A-Z). Вид атомов какого-либо химического элемента с ядром, состоящим из строго определённого числа протонов (Z) и нейтронов (N) называется нуклидом.

Многие металлы широко распространены в природе. Так, содержание некоторых металлов в земной коре следующее: алюминия — 8,2% железа — 4,1%кальция — 4,1%натрия — 2,3%магния — 2,3%калия - 2,1 %титана — 0,56%

Большое количество натрия и магния содержится в морской воде: — 1,05%, — 0,12%.

В природе металлы встречаются в различном виде:

— в самородном состоянии: серебро , золото , платина , медь , иногда ртуть

— в виде оксидов: магнетит Fe3O4, гематит Fe2О3 и др.

— в виде смешанных оксидов: каолин Аl2O3 • 2SiO2 • 2Н2О, алунит (Na,K)2O • АlО3 • 2SiO2 и др.

— различных солей:

сульфидов: галенит PbS, киноварь НgS,

хлоридов: сильвин КС1, галит NaCl, сильвинит КСl• NаСl, карналлит КСl • МgСl2 • 6Н2О, сульфатов: барит ВаSO4, ангидрид Са8О4 фосфатов: апатит Са3(РО4)2, карбонатов: мел, мрамор СаСО3, магнезит МgСО3.

Многие металлы часто сопутствуют основным природным минералам: скандий входит в состав оловянных, вольфрамовых руд, кадмий — в качестве примеси в цинковые руды, ниобий и тантал — в оловянные.

Железным рудам всегда сопутствуют марганец, никель, кобальт, молибден, титан, германий, ванадий.

Физические свойства Цвет. Металлы не пропускают свет сквозь себя, то есть непрозрачны. В отраженном свете каждый элемент обладает своим собственным оттенком – цветом. Среди технических металлов окраску имеет только медь и сплавы с ней. Для остальных элементов характерным является оттенок от серебристо-белого до серо-стального.Плавкость. Эта характеристика указывает на способность элемента под воздействием температуры переходить в жидкое состояние из твердого. Плавкость считается важнейшим свойством металлов. В процессе нагревания все металлы из твердого состояния переходят в жидкое. При охлаждении же расплавленного вещества происходит обратный переход – из жидкого в твердое состояние. Электропроводность. Данная характеристика свидетельствует о способности переноса свободными электронами электричества. Электропроводность металлических тел в тысячи раз больше, чем неметаллических. При увеличении температуры показатель проводимости электричества снижается, а при уменьшении температуры, соответственно, повышается. Необходимо отметить, что электропроводность сплавов будет всегда ниже, нежели какого-либо металла, составляющего сплав.Магнитные свойства. К явно магнитным (ферромагнитным) элементам относят только кобальт, никель, железо, а также ряд их сплавов. Однако в процессе нагревания до определенной температуры указанные вещества теряют магнитность. Отдельные сплавы железа при комнатной температуре не относятся к ферромагнитным. Теплопроводность. Эта характеристика указывает на способность перехода тепла к менее нагретому от более нагретого тела без видимого перемещения составляющих его частиц. Высокий уровень теплопроводности позволяет равномерно и быстро нагревать и охлаждать металлы. Среди технических элементов наибольшим показателем обладает медь. Металлы в химии занимают отдельное место. Наличие соответствующих характеристик позволяет применять то или иное вещество в определенной области.- Читайте подробнее на FB.ru:

Химические свойства металлов Коррозийная стойкость. Коррозией называют разрушение вещества в результате электрохимического или химического взаимоотношения с окружающей средой. Самым распространенным примером считается ржавление железа. Коррозийная стойкость относится к важнейшим природным характеристикам ряда металлов. В связи с этим такие вещества, как серебро, золото, платина получили название благородных. Обладает высокой коррозийной сопротивляемостью никель и прочие цветные металлы. Черные металлы подвержены разрушению быстрее и сильнее, нежели цветные.Окисляемость. Эта характеристика указывает на способность элемента вступать в реакцию с О2 под влиянием окислителей.Растворимость. Металлы, обладающие в жидком состоянии неограниченной растворимостью, при затвердении могут формировать твердые растворы. В этих растворах атомы от одного компонента встраиваются в кристаллическую решетку другого составляющего только в определенных пределах. Необходимо отметить, что физические и химические свойства металлов являются одними из основных характеристик этих элементов.

Гидрокси́д бери́ллия — амфотерный гидроксид, имеющий химическую формулу Be(OH)2. При стандартных условиях представляет собой гелеобразное белое вещество, практически нерастворимое в воде. Вместе с тем, он хорошо растворяется в разбавленных минеральных кислотах. Гидроксид бериллия получают в виде геля при обработке солей бериллия гидроксидами щелочных металлов или гидролизом нитрида или фосфида бериллия.

Химические свойстваВзаимодействие с щелочами с образованием соли:

Взаимодействие с кислотами с образованием соли и воды:

Разложение на оксид бериллия и воду при нагревании до 400 °C:

Геохимическая история бериллия в земной коре всецело связана с историей образования кислых и щелочных магм, заключающих в себе более 95% атомов бериллия. При этом особенности поведения бериллия в процессах кристаллизации кислых и щелочных магм определяются в первую очередь геохимической спецификой этих существенно отличных друг от друга процессов. Ничтожное содержание бериллия в гранитном расплаве исключает возможность образование индивидуализированных бериллиевых минералов. В то же время отсутсвие в расплаве высоковалентных катионов, которые могли бы компенсировать вхождение бериллия в кристалическую решетку силикатов, затрудняет и ограничивает захват бериллия породообразующими минералами гранитов. Таким образом, ограниченное рассеяние бериллия в продуктах главной фазы кристаллизации гранитной магмы приводит к его накоплению в продуктах конечной стадии кристаллизации. Особенно резкое, скачкообразное обогащение поздних магматических продуктов бериллием, по-видимому, происходит в процессе кристализации кварца гранитов, практически не принимающего бериллия в свою решетку. С этим процессом связано появление на поздних стадиях формирования гранитнов расплавов, эманации и растворов, в различной стадии обогащенной бериллием. Дальнейшая их судьба этих образований, определяющаяся общими закономерностями становления конкретного магматического очага и геохимической спецификацией, крайне разнообразна.

Еще одним отличием в свойствах элементов II группы является различная склонность элементов к комплексообразованию. Бериллий образует достаточно прочные комплексы, например, фторидные, ацетилацетонатные, термически устойчивый тетрамин; магний и особенно кальций образуют весьма непрочные комплексы. Так, для магния известен комплекс с ацетилацетоном; для Са аддукты со спиртом и весьма непрочные комплексы с аммиаком; Sr, Ва и Ra комплексов не образуют. Они могут входить в состав комплексного соединения только в виде внешнесферного катиона.

Бериллий и его соединения вызывают раздражение глаз—конъюнктивиты, а также поражение кожи — контактный дерматит, язвы кожи, подкожные гранулемы, возникающие в результате попадания бериллия на поврежденную кожу.

Металлический бериллий и все его соединения обладают весьма высокой токсичностью, они могут вызвать острые и хронические заболевания. Пары и аэрозоль бериллия и его соединений вызывают своеобразное тяжелое поражение легких— легочный гранулематоз, который может развиваться и проявляться во время работы, а также спустя несколько лет после прекращения работы с ними.

S-Элементы IIA подгруппы. Магний и его соединения. Гидролиз солей магния. Растворимость гидроксида магния в воде. Влияние солей аммония на растворимость гидроксида магния. Различное поведение основных карбонатов бериллия и магния в избытке кальцинированной соды. Практическое применение соединений магния: магнезиальный цемент, белая магнезия, Mg-органические соединения, сплавы

Соединения магния. Преобладающая степень окисления (+2) для магния обусловлена его электронной конфигурацией, энергиями ионизации и размерами атома. Степень окисления (+3) невозможна, так как третья энергия ионизации составляет для магния 7733 кДж моль–1. Эта энергия гораздо выше, чем можно компенсировать образованием дополнительных связей, даже если они будут преимущественно ковалентными. Причины неустойчивости соединений магния в степени окисления (+1) менее очевидны. Оценка энтальпии образования таких соединений показывает, что они должны быть устойчивыми по отношению к составляющим их элементам. Причиной того, что соединения магния(I) не устойчивы, является гораздо более высокое значение энтальпии образования соединений магния(II), что должно привести к быстрому и полному диспропорционированию:

Mg(к) + Cl2(г) = MgCl2(к);

DН°обр = –642 кДж/(моль MgCl2)

2Mg(к) + Cl2(г) = 2MgCl(к);

DН°обр = –250 кДж/(2 моль MgCl)

2MgCl(к) = Mg(к) + MgCl2(к);

DН°диспроп = –392 кДж/(2 моль MgCl)

Если будет найден путь синтеза, который затруднит диспропорционирование, такие соединения, возможно, будут получены. Имеются некоторые доказательства образование частиц магния(I) при электролизе на магниевых электродах. Так, при электролизе NaCl на магниевом аноде выделяется водород, а количество магния, потерянное анодом, соответствует заряду +1,3. Аналогично при электролизе водного раствора Na2SO4 количество выделившегося водорода соответствует окислению воды ионами магния, заряд которых соответствует +1,4.

Большинство солей магния хорошо растворяются в воде. Процесс растворения сопровождается незначительным гидролизом. Полученные растворы имеют слабокислотную среду:

[Mg(H2O)6]2+ + H2O [Mg(H2O)5(OH)]+ + H3O+

Соединения магния со многими неметаллами, в том числе с углеродом, азотом, фосфором, серой необратимо гидролизуются водой.

Гидроксид магния нерастворим в воде, тем не менее он является основанием.

Гидроксид магния (формула Mg(OH)2) - это химическое неорганическое соединение, гидроксид магния (щелочноземельного металла). Относится к группе нерастворимых оснований.Физические свойства магния гидроксида 1. В нормальных условиях магния гидроксид представляет собой бесцветные (прозрачные) кристаллы, имеющие гексагональную решетку. 2. Разлагается на оксид магния (MgO) и воду (H2O) при температуре триста пятьдесят градусов.3. Поглощает из воздуха углекислый газ (CO2) и воду (H2O), образуя при этом основной карбонат магния. 4. Практически не растворяется в воде и хорошо растворим в солях аммония.5. Это основание средней силы.6. В природе встречается в виде особого минерала - брусита.

Гидроксид магния Mg(OH)2 образует бесцветные кристаллы. Растворимость этого соединения невелика (2·10–4 моль/л при 20° С). Его можно перевести в раствор действием солей аммония: Mg(OH)2 + 2NH4Cl = MgCl2 + 2NH3·H2O

Гидроксид магния термически неустойчив и при нагревании разлагается:

Mg(OH)2 = MgO + H2O

В промышленных масштабах гидроксид магния получают осаждением известью из морской воды и природных рассолов. Гидроксид магния является мягким основанием, которое в виде водного раствора (магнезиальное молоко) широко используется для снижения кислотности желудочного сока. При этом, несмотря на мягкость, Mg(OH)2 нейтрализует кислоты в 1,37 раз больше, чем гидроксид натрия NaOH и в 2,85 раз больше, чем гидрокарбонат натрия NaHCO3. Его используют также для получения оксида магния, рафинирования сахара, очистки воды в котельных установках, в качестве компонента зубных паст.

Окись магния изредка встречается в природе (минерал периклаз). Получаемая прокаливанием природного магнезита MgO является исходным продуктом для изготовления различных огнеупорных изделий и искусственных строительных материалов (“ксилолит” и др.) Кашица из замешанной на очищенном бензине окиси магния может быть использована для снятия с бумаги жировых и масляных пятен: ею смазывают пятно и дают бензину испариться, после чего удаляют сорбировавшую жир окись магния.

В основе ксилолита лежит магнезиальный цемент, получаемый смешиванием предварительно прокаленной при 800оС окиси магния с 30%-ным водным раствором MgCl2 (на 4 вес. ч. MgO берется 1 вес. ч. безводного MgCl2). Вследствие образования более или менее длинных цепей типа -Mg-O-Mg-O-Mg- (с гидроксилами или атомами хлора на концах) смесь через несколько часов дает белую, очень прочную и легко полирующуюся массу. При изготовлении ксилолита к исходной смеси примешивают опилки и т.п. Кроме ксилолита, используемого главным образом для покрытия полов, на основе магнезиального цемента часто готовят жернова, точильные камни и т.д.

Белый амфотерный гидроксид магния очень малорастворим в воде. Растворенная часть Mg(OH)2 диссоциирована по типу основания и является электролитом слабой силы. Осаждение Mg(OH)2 в процессе нейтрализации кислого раствора наступает при pH=10,5. Гидроксид магния встречается в природе (минерал брусит). Помимо кислот, он растворим в растворах солей аммония (что важно для аналитической химии). Растворение, например, в NH4Cl протекает по схеме Mg(OH)2+2NH4Cl MgCl2+2NH4OH и обусловлено образованием сравнительно малодиссоциированного гидроксида аммония.

Белая магнезия - это основная соль приблизительного состава 3MgCO3Mg(OH)23H2O.

Белая магнезия (MgCO3) входит в состав зубных порошков и присыпок; кроме того, она уменьшает кислотность желудочного сока.

было создано множество новых сплавов, отличавшихся значительно лучшими механическими и антикоррозийными свойствами, а также повышенной жаропрочностью и способностью сохранять свои прочностные характеристики при повышении температуры. В эти сплавы вводились небольшие добавки различных элементов - циркония, тория, цинка, серебра, меди, бериллия, титана и других. Подобного рода сплавы нашли широкое применение в авиации и ракетостроении.

Было создано большое количество разнообразных сплавов, в которых магний не является главной составной частью. Важнейшим из таких сплавов является “магналий” - сплав алюминия с 5-30% магния. Магналий тверже и прочнее чистого алюминия, легче последнего обрабатывается и полируется. Как “магналий”, так и “электрон” на воздухе покрываются защитной окисной пленкой, предохраняющей их от дальнейшего окисления.

Введение 0,05% Mg в чугун резко повышает его ковкость и сопротивление разрыву.

Многие магниевые детали применяются в настоящее время в самых разных областях электротехники. Небольшой вес изделий, выполненных из магниевых сплавов, явился также важной причиной применения их для изготовления различных бытовых предметов и аппаратуры. Магниевые детали очень хорошо поглощают вибрацию. Их удельная вибрационная прочность почти в 100 раз больше, чем у лучших алюминиевых сплавов, и в 20 раз больше, чем у легированной стали. Это очень важное свойство при создании разнообразных транспортных средств.Магниевые сплавы превосходят сталь и алюминий по удельной жесткости и поэтому применяются для изготовления деталей, подвергающихся изгибающим нагрузкам (продольным и поперечным). Магниевые сплавы немагнитны, совершенно не дают искры при ударах и трении, легко обрабатываются резанием (в 6-7 раз легче, чем сталь, в 2-2,5 раза - чем алюминий).

Магний и его сплавы обладают очень высокой хладостойкостью.

 

S-Элементы IIA подгруппы. Щелочноземельные металлы. Формы нахождения в природе. Производство щелочноземельных металлов. Химические свойства. Сравнительная характеристика однотипных соединений элементов подгруппы кальция. Гашеная и негашеная известь. Жёсткость воды и методы её устранения.

Во IIA группу входят бериллий, магний, кальций, стронций, барий и радий. Последние четыре элемента имеют групповое название – щелочноземельные элементы.

В земной коре наиболее распространены четыре из этих тринадцати элементов: Na (w =2,63 %), K (w = 2,41 %), Mg (w = 1,95 %) и Ca (w = 3,38 %). Остальные встречаются значительно реже, а франций вообще не встречается.

Щёлочноземельные металлы

Щёлочноземельные металлы — химические элементы: кальций Ca, стронций Sr, барий Ba, радий Ra (иногда к щёлочноземельным металлам ошибочно относят также бериллий Be и магний Mg). Названы так потому, что их оксиды — «земли» (по терминологии алхимиков) — сообщают воде щёлочную реакцию. Соли щёлочноземельных металлов, кроме радия, широко распространены в природе в виде минералов.

Большая часть металлов присутствует в природе в виде руд и соединений. Они образуют оксиды, сульфиды, карбонаты и другие химические соединения. Для получения чистых металлов и дальнейшего их применения необходимо выделить их из руд и провести очистку. При необходимости проводят легирование и другую обработку металлов. Изучением этого занимается наука металлургия. Металлургия различает руды чёрных металлов (на основе железа) и цветных (в их состав не входит железо, всего около 70 элементов). Золото, серебро и платина относятся также к драгоценным металлам. Кроме того, в малых количествах они присутствуют в морской воде, растениях, живых организмах (играя при этом важную роль).

Известно, что организм человека на 3 % состоит из металлов. Больше всего в наших клетках кальция и натрия, сконцентрированного в лимфатических системах. Магний накапливается в мышцах и нервной системе, медь — в печени, железо — в крови.