Схемы перекрывания атомных орбиталей при образовании связей в молекулах H2O, NH3, CH4

Молекула воды состоит из атома кислорода и двух атомов водорода. Два неспаренных р-электрона атома кислорода занимают две орбитали, которые располагаются под углом 90o друг к другу. При образовании молекулы воды орбиталь каждого р-электрона перекрывается орбиталью s – электрона атома водорода (рис. 7.1).

Угол между связями должен быть близок к углу между облаками р-электронов, т.е. к 90о. Экспериментально найдено, что угол между связями в молекуле воды равен 104,5о. Это связано с тем, что электроны сильнее оттянуты к атому кислорода, поскольку связь О–Н является полярной ковалентной связью. Таким образом, происходит отталкивание положительных зарядов, возникающих у атомов водорода, что приводит к увеличению угла между связями.

В образовании молекулы аммиака участвуют три неспаренных р-электрона атома азота, орбитали которых расположены в трёх взаимно перпендикулярных направлениях и s-электроны трёх атомов водорода (рис. 7.2).

Три связи N–H в молекуле аммиака должны располагаться под углами друг к другу, близкими к 90о. Экспериментально найдено, что угол между связями в молекуле аммиака равен 107,3о, это обусловлено той же причиной, что и в случае молекулы воды. Кроме того, мы не учитываем участие 2s-электронов в образовании химических связей.

При образовании молекулы метана атом углерода переходит в возбужденное состояние, то есть имеет три неспаренных р-электрона и один s-электрон.

Рассуждая так же, как и в предыдущих случаях, можно предположить, что атом углерода будет образовывать три связи, направленные под углом 90o друг к другу и связь, направленную произвольно, поскольку она образована s-электроном, а s-электрон имеет сферическую симметрию.

Поскольку р-орбитали более вытянуты от ядра, s-орбиталь, они сильнее перекрываются с орбиталями других атомов, а, значит, связи, образованные р-электронами должны быть более прочными. Но из эксперимента известно, что все связи в молекуле метана равноценны и направлены к вершинам тетраэдра (угол между связями равен 109,5о.

Это явление объясняется представлением о гибридизации волновых функций, введённым Полингом и Слейтером. Гибридизация валентных орбиталей – это выравнивание их по форме и энергии. Представление о гибридизации используется в том случае, когда в образовании связей в молекуле участвуют электроны, принадлежащие к различным типам орбиталей. Гибридная орбиталь асимметрична и сильно вытянута по одну сторону от ядра.

Рассмотрим электронное строение молекулы метана, но уже с позиций метода гибридизации. Четыре неспаренных электрона атома углерода взаимодействуют между собой в ходе образования химической связи с электронами другого атома, давая четыре новых равноценных гибридных облака. Такая гибридизация называется sp3-гибридизацией. Четыре совершенно одинаковые sp3-гибридные орбитали атома углерода расположены под углом 109,5о друг к другу и направлены к вершинам тетраэдра, в центре которого расположен атом углерода (рис. 7.3).

 


Возникает вопрос – можно ли с позиций гибридизации орбиталей объяснить образование химической связь между атомами в молекулах H2O и NH3? Направленность связей в этих молекулах можно объяснить с использованием понятия гибридизации. Такой подход является даже более точным, чем изложенный ранее. Это обусловлено тем, что гибридная орбиталь сильно вытянута в одну сторону от ядра, и перекрывание гибридных орбиталей с электронными орбиталями других атомов является более сильным, чем перекрывание орбиталей s- и р-электронов, что приводит к образованию более прочной связи, а, значит, и более устойчивых молекул.

Возможны и другие типы гибридизации волновых функций электронов, например, гибридизация с участием d-орбиталей.

Образование химической связи в молекулах H2O и NH3 также можно объяснить с позиций sp3-гибридизации атомных орбиталей кислорода и азота (рис. 7.4).

В то время как у атома углерода все четыре гибридные орбитали заняты связывающими электронными парами (рис. 7.3), у атома азота одна из четырех гибридных орбиталей занята неподелённой электронной парой (угол 107,3о), а у атома кислорода – две орбитали (угол 104,5о) (рис. 7.4). Значит, отталкивающее действие неподелённых электронных пар влияет на валентные углы – при переходе от молекул метана к молекулам аммиака и воды валентный угол уменьшается.

 

Кратные связи:

би-Связь – химическая связь, образованная в результате перекрывания электронных орбиталей вдоль линии, соединяющей ядра атомов.

пи-Связь – химическая связь, образованная в результате перекрывания электронных орбиталей по обе стороны от линии, соединяющей ядра атомов.