Емкость плоского конденсатора
Напряженность поля внутри конденсатора (рис. 5.11):


Рис. 5.11
Напряжение между обкладками:

где
– расстояние между пластинами.
Так как заряд
, то
.
| (5.4.7) |
Как видно из формулы, диэлектрическая проницаемость вещества очень сильно влияет на емкость конденсатора. Это можно увидеть и экспериментально: заряжаем электроскоп, подносим к нему металлическую пластину – получили конденсатор (за счет электростатической индукции, потенциал увеличился). Если внести между пластинами диэлектрик с ε, больше, чем у воздуха, то емкость конденсатора увеличится.
Из (5.4.6) можно получить единицы измерения ε0:
| (5.4.8) |
.
Емкость цилиндрического конденсатора
Разность потенциалов между обкладками цилиндрического конденсатора, изображенного на рисунке 5.12, может быть рассчитана по формуле:

где λ – линейная плотность заряда,R1 иR2 – радиусы цилиндрических обкладок,l– длина конденсатора,
.

Рис. 5.12
Тогда, так как
, получим
| (5.4.9) |
Понятно, что зазор между обкладками мал:
то есть 
Тогда 
|
Емкость шарового конденсатора (рис. 5.13)

Рис. 5.13
Из п. 3.6 мы знаем, что разность потенциала между обкладками равна:

Тогда, так как
, получим
.
Это емкость шарового конденсатора, где R1 и R2 – радиусы шаров.
В шаровом конденсаторе
– расстояние между обкладками. Тогда
| (5.4.11) |
27. Диэлектрики в электрическом поле. Поляризация диэлектрика. Диэлектрическая проницаемость. Электрическое смещение.
Диэлектрик (изолятор) — вещество, практически не проводящее электрический ток. Концентрация свободных носителей заряда в диэлектрике не превышает 108 см−3. Основное свойство диэлектрика состоит в способности поляризоваться во внешнем электрическом поле. С точки зрения зонной теории твёрдого тела диэлектрик — вещество с шириной запрещённой зоны больше 3 эВ.
Поляризация диэлектриков — явление, связанное с ограниченным смещением связанных зарядов в диэлектрике или поворотом электрических диполей, обычно под воздействием внешнего электрического поля, иногда под действием других внешних сил или спонтанно.
Поляризацию диэлектриков характеризует вектор электрической поляризации. Физический смысл вектора электрической поляризации — это дипольный момент, отнесенный к единице объема диэлектрика. Иногда вектор поляризации коротко называют просто поляризацией.
· Вектор поляризации применим для описания макроскопического состояния поляризации не только обычных диэлектриков, но и сегнетоэлектриков, и, в принципе, любых сред, обладающих сходными свойствами. Он применим не только для описания индуцированной поляризации, но и спонтанной поляризации (у сегнетоэлектриков).
Поляризация — состояние диэлектрика, которое характеризуется наличием электрического дипольного момента у любого (или почти любого) элемента его объема.
Диэлектри́ческая проница́емость среды — физическая величина, характеризующая свойства изолирующей (диэлектрической) среды и показывающая зависимость электрической индукции от напряжённости электрического поля.
Определяется эффектом поляризации диэлектриков под действием электрического поля (и с характеризующей этот эффект величиной диэлектрической восприимчивости среды).
Различают относительную и абсолютную диэлектрические проницаемости.
ЭЛЕКТРИЧЕСКОЕ СМЕЩЕНИЕ
индукция электрическая, - векторная величина D, характеризующая электрич. поле. В нек-рой точке поля Э. с. равно геом. сумме напряжённости электрического поля Е, умноженной на электрическую постоянную ЕС, и поляризованности Р: D = е0Е + Р. Если среда изотропна, то D = ее0Е, где е - относит. диэлектрическая проницаемость среды. Во многих случаях, например, если однородный и изотропный диэлектрик заполняет всё пространство, где имеется электрич. поле, или часть его, ограниченную эквипотенциальными поверхностями, Э. с. не зависит от диэлектрич. проницаемости е и совпадает с Э. с. в этой же точке для электрич. поля, создаваемого в вакууме той же системой свободных зарядов. Единица Э. с. (в СИ) - кулон на квадратный метр(Кл/м2).
28. Постоянный ток. Стационарное электрическое поле. Закон Ома для однородного участка цепи.
Постоя́нный ток, (англ. direct current) — электрический ток, который с течением времени не изменяется по величине и направлению.

Постоянный ток Переменный синусоидальный ток Пульсирующий ток, форма импульсов близка к пилообразной Произвольно изменяющийся ток
Стационарное электрическое поле - электрическое поле неизменяющихся электрических токов при условии неподвижности проводников с токами.
Стационарное электрическое поле связано с наличием электрического тока, и это упрощает измерения разности потенциалов между любыми двумя точками поля - для этого достаточно прикоснуться к этим точкам щупами, которые подключены к гальванометру. Стационарное электрическое поле, создаваемое системой неподвижных зарядов, называется электростатическим полем. Стационарное электрическое поле в проводнике, как и электрическое поле неподвижных зарядов, характеризуется напряженностью электрического поля, которая неизменна по времени в любой из точек проводника.
Зако́н О́ма — эмпирический физический закон, определяющий связь электродвижущей силы источника или электрического напряжения с силой тока и сопротивлением проводника установлен в 1826 году, и назван в честь его первооткрывателя Георга Ома.
В своей оригинальной форме он был записан его автором в виде : 
Здесь X — показания гальванометра, т.е в современных обозначениях сила тока I, a — величина, характеризующая свойства источника напряжения, постоянная в широких пределах и не зависящая от величины тока, то есть в современной терминологии электродвижущая сила (ЭДС)
, l — величина, определяемая длиной соединяющих проводов, чему в современных представлениях соответствует сопротивление внешней цепи R и, наконец, b параметр, характеризующий свойства всей установки, в котором сейчас можно усмотреть учёт внутреннего сопротивления источника тока r.
В таком случае в современных терминах и в соответствии с предложенной автором записи формулировка Ома (1) выражает
29. Электродвижущая сила. Закон Ома для полной (замкнутой) цепи.
Электродвижущая сила (ЭДС) — скалярная физическая величина, характеризующая работу сторонних сил, то есть любых сил неэлектрического происхождения, действующих в квазистационарных цепях постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль всего контура.
По аналогии с напряжённостью электрического поля вводят понятие напряжённость сторонних сил
, под которой понимают векторную физическую величину, равную отношению сторонней силы, действующей на пробный электрический заряд, к величине этого заряда. Тогда в замкнутом контуре
ЭДС будет равна:

где
— элемент контура.
Закон Ома для полной цепи:

где:
·
— ЭДС источника напряжения,
·
— сила тока в цепи,
·
— сопротивление всех внешних элементов цепи,
·
— внутреннее сопротивление источника напряжения.
Из закона Ома для полной цепи вытекают следствия:
· При r<<R сила тока в цепи обратно пропорциональна её сопротивлению. А сам источник в ряде случаев может быть назван источником напряжения
· При r>>R сила тока от свойств внешней цепи (от величины нагрузки) не зависит. И источник может быть назван источником тока.
Часто[2] выражение

где
есть напряжение или падение напряжения, (или, что то же, разность потенциалов между началом и концом участка проводника) тоже называют «Законом Ома».
Таким образом, электродвижущая сила в замкнутой цепи, по которой течёт ток в соответствии с (2) и (3) равняется:

То есть сумма падений напряжения на внутреннем сопротивлении источника тока и на внешней цепи равна ЭДС источника. Последний член в этом равенстве специалисты называют «напряжением на зажимах», поскольку именно его показывает вольтметр, измеряющий напряжение источника между началом и концом присоединённой к нему замкнутой цепи. В таком случае оно всегда меньше ЭДС.
30. Закон Ома для неоднородного участка. Законы Кирхгофа.
Закон Ома для неоднородного участка цепи имеет вид:

где R — общее сопротивление неоднородного участка.
ЭДС
может быть как положительной, так и отрицательной. Это связано с полярностью включения ЭДС в участок: если направление, создаваемое источником тока, совпадает с направлением тока, проходящего в участке (направление тока на участке совпадает внутри источника с направлением от отрицательного полюса к положительному), т.е. ЭДС способствует движению положительных зарядов в данном направлении, то
> 0, в противном случае, если ЭДС препятствует движению положительных зарядов в данном направлении, то
< 0.
Законы Кирхгофа.
.