Линейные скорости и ускорение. Связь между линейными и угловыми кинематическими величинами. Аналогия формул, описывающих поступательное и вращательное движение твердого тела.

Линейная скорость точки, движущейся равномерно по окружности, равна угловой скорости, умноженной на радиус окружности. линейная скорость равна произведению угловой скорости на радиус тела; период равен удвоенному числу ПИ деленному на угловую скорость; период равен единице деленной на частоту;.Линейное ускорение - изменение скорости тела по модулю. В отличае от углового ускорения - изменения скорости по направлению. Для того чтобы связать линейную скорость v произвольной точки А твердого тела с угловой скоростью ω вращения этого тела вокруг неподвижной оси ОО’, поделим обе части формулы на dt. Учитывая, что dr/dt=v и dφ/dt=ω, получим

v=[ω,r] (1.10)

т.е. линейная скорость вращающейся точки равна векторному произведению угловой скорости на радиус-вектор этой точки. Поступательное и вращательное движение твердого тела Поступательным движением твердого тела называется такое движение, при котором любая прямая, связанная с телом, перемещается в пространстве, оставаясь параллельной самой себе. Другими словами, при поступательном движении отсутствуют какие- либо повороты тела. При вращательном движении все точки тела, лежащие на некоторой прямой, остаются неподвижными во все время движения. Указанная прямая называется осью вращения. Точки тела, не лежащие на оси вращения, движутся в плоскостях, перпендикулярных оси вращения, по окружностям с центром на оси.

Поступательное движение. Понятие материальной точки. Траектория, путь, перемещение, закон движения. Средняя и истинная (мгновенная) скорость. Криволинейное движение. Нормальное и тангенциальное ускорения