Свойства скалярного произведения.
Для любых векторов и справедливы следующие свойства скалярного произведения:
1. свойство коммутативности скалярного произведения ;
2. свойство дистрибутивности или ;
3. сочетательное свойство или , где - произвольное действительное число;
4. скалярный квадрат вектора всегда не отрицателен , причем тогда и только тогда, когда вектор нулевой.
Эти свойства очень легко обосновать, если отталкиваться от определения скалярного произведения в координатной форме и от свойств операций сложения и умножения действительных чисел.
Для примера докажем свойство коммутативности скалярного произведения . По определению и . В силу свойства коммутативности операции умножения действительных чисел, справедливо и , тогда . Следовательно, , что и требовалось доказать.
Аналогично доказываются остальные свойства скалярного произведения.
Следует отметить, что свойство дистрибутивности скалярного произведения справедливо для любого числа слагаемых, то есть, и , откуда следует