Скалярное произведение в координатах.

Покажем как скалярное произведение вычисляется через координаты векторов в прямоугольной системе координат на плоскости и в пространстве.

Определение.

Скалярным произведением двух векторов на плоскости или в трехмерном пространстве в прямоугольной системе координат называется сумма произведений соответствующих координат векторов и .

То есть, для векторов на плоскости в прямоугольной декартовой системе координат формула для вычисления скалярного произведения имеет вид
,
а для векторов в трехмерном пространстве скалярное произведение в координатах находится как
.

Таким образом, мы имеем третье определение скалярного произведения. Покажем, что это определение эквивалентно первому.

Сначала докажем равенства для векторов на плоскости, заданных в прямоугольной декартовой системе координат.

Отложим от начала координат (точка О) векторы и . Тогда (при необходимости обращайтесь к статьямоперации над векторами и их свойства и операции над векторами в координатах).

Будем считать точки О, А и В вершинами треугольника ОАВ. По теореме косинусов мы можем записать . Так как , то последнее равенство можно переписать как , а по первому определению скалярного произведения имеем , откуда .

Вспомнив формулу вычисления длины вектора по координатам, получаем

Абсолютно аналогично доказывается справедливость равенств для векторов , заданных в прямоугольной системе координат трехмерного пространства.

Формула скалярного произведения векторов в координатах позволяет заключить, что скалярный квадрат вектора равен сумме квадратов всех его координат: на плоскости , в пространстве .