Интегрирование дифференциального бинома.

Постановка задачи.Найти неопределенный интеграл

,

где – рациональные числа.

План решения.Выражение называется дифференциальным биномом. Условия его интегрируемости в элементарных функциях получены П.Л. Чебышевым. Интеграл

выражается через конечную комбинацию элементарных функций в следующих трех случаях:

1) – целое число; в этом случае данный интеграл вычисляется простым разложением;

2) – целое число; в этом случае подстановка , где – знаменатель дроби , приводит к интегралу от рациональной функции.

3) – целое число; в этом случае подстановка , где – знаменатель дроби , приводит к интегралу от рациональной функции.

Задача 13. Найти неопределенные интегралы.