Матричный способ решения систем линейных уравнений

Любую систему линейных уравнений можно записать в матричном виде AX=B. Если основная матрица системы А – невырожденная, то решение можно записать следующим образом X=A–1B. Записанное равенство составляет сущность матричного решения систем линейных уравнений.

Пример 3.4. Решить систему линейных уравнений при помощи обратной матрицы

Решение. Запишем систему в матричном виде

Найдем обратную матрицу. Поскольку

то

Тогда

à

% Используя обратную матрицу, легко доказать теорему Крамера. Действительно, решение любой квадратной системы линейных уравнений можно записать в виде X=A–1B, если detA¹0. Существование и единственность решения следует из существования и единственности обратной матрицы. Поэтому выведем формулы Крамера, для этого решение запишем в развернутом виде, используя присоединенную матрицу

Учитывая, что detA=D, получим после умножения матриц

откуда следует, что

Выражение в скобках есть разложение определителя по i-му столбцу матрицы, полученной из основной заменой i-го столбца столбцом свободных членов. В результате, получаются формулы Крамера. &