Разряд конденсатора.
Классический метод рассчета переходных процессов.
Модели источников и единичная функции.
1(t)
0, t<0
1(t)=
t 1, t>=0
tK=0
0, t<0
e(t) U(t) U(t)=
e(t), t>=0
U(t)=e(t)*1(t)
tK=0
0, t<0
Y(t) i(t)=
Y(t), t>=0
i(t)=Y(t)*1(t)
ICX. Цепь первого порядка.
r 1) расчет цепи до конца или расчет независимых
E C начальных условий (ННУ) : UC(0)
IL(0).
UC(0)=0 {UC(0_)=UC(0+)=UC(0)=0)
2) рассчёт : после коммутации
i(t)
E=UR+UC
R E=iR+UC
E C UC E=R*C*(dUC/dt)+UC)
dUC/dt= -1/RC* UC+1/RC*E
X’= A1 * X + B1*V
t –постоянная t-ии цепи t=R*C
dUC/dt + 1/t*UC= 1/t*E dUC/dt +1/t*UC=0
&+1/t=0 &=-1/t=1/R*C
UC(t)=UНЧ+UОО=UС УСТ+ UС СВ UОО= UС СВ=A*(e)&t= A*(e)-t/t
UС УСТ=UНЧ
iC=C*(dUC/dt)=0 t
(1/t)* UС УСТ=(1/t)*E
UС УСТ=E UС УСТ=E
UC(t)=UС УСТ+ UС СВ=E+A*(e)-t/t
A-?
t=0 UC(0)=E+A 0=A+E A=-E
UC(t)= E*(1-e-t/t) iC(t)=C*(dUC/dt)=E/R* e-t/t
E(t)
E
UC t=R*c – постоянная времени цепи.
E
-определяет t, за которое функция уменьшается в e раз.
i(t) Переходный процесс обычно заканчивается за 3-4 t.
E/R
r До коммутация : ННУ Uc(0-)=Uc(0+)=Uc(0)=E
C
После коммутации : Uc+Ur=0 Ur=i*r
Характеристическое уравнение
; Uc(t)=Ucуст+Ucсв; Uc уст=0
Uс св=
Uc(t)=Uc уст+Uc св t=0 Uс(0)=Uс уст+A A=Uc(0)-Uc уст=E (Uc уст=)
Ответ: Uc(t)=E ic(t)=