Примеры.

1. Передаточная функция РЦФ: H(z) = (1-z5)/(1-z).

Прямым делением числителя на знаменатель получаем: H(z) = 1+z+z2+z3+z4.

H(z) ó h(n) = {1,1,1,1,1}. Фильтр РЦФ является КИХ-фильтром.

2. Передаточная функция: H(z) = 1/(1-2z).

Методом обратного z-преобразования: h(n) = 2n.

Фильтр РЦФ является БИХ-фильтром.

Устойчивость фильтров. Фильтр называется устойчивым, если при любых начальных условиях реакция фильтра на любое ограниченное воздействие также ограничена. Критерием устойчивости фильтра является абсолютная сходимость отсчетов его импульсного отклика:

|h(n)| < ¥. (8.8)

Анализ устойчивости может быть проведен по передаточной функции. В устойчивой системе значение H(z) должно быть конечным во всех точках z-плоскости, где |z| £ 1, а, следовательно, передаточная функция не должна иметь особых точек (полюсов) на и внутри единичного круга на z-плоскости. Полюсы H(z) определяются корнями многочлена знаменателя передаточной функции (8.2).