Билинейное Z-преобразование

Принцип преобразования. При стандартном z-преобразовании передаточной функции используется замена переменной вида:

z = exp(-pDt), (6.3.1)

где Dt - шаг дискретизации данных, p – комплексная переменная, р = s+jw.

Уравнение (6.3.1) можно записать в виде ln z = -pDt и разложить ln z в ряд:

ln z = -2[(1-z)/(1+z)+(1-z)3/(3(1-z)3)+ ....], z > 0.

Первый член этого разложения и представляет собой билинейное z- преобразование:

p = (2/Dt)(1-z)/(1+z). (6.3.2)

По сути, оно представляет собой отображение точек комплексной p-плоскости в точки комплексной z-плоскости, и наоборот. В общем виде:

p = g(1-z)/(1+z), (6.3.3)

z = (g-p)/(g+p). (6.3.4)

Значение множителя γ не меняет формы преобразования, в связи с чем обычно принимают g = 1. Подставим p = jw в (6.3.4) и выразим z в показательной форме:

z = r exp(jj(w)), r = |z| = 1.

j(w) = 2 arctg(w/g),­

Рис. 6.3.1.

При изменении w от - ¥ до ¥ фазовый угол j(w) монотонно изменяется от -p до p (см. рис. 6.3.1), т.е. мнимая ось p-плоскости (p = jw, -¥ < w < ¥) отображается в единичную окружность z-плоскости. В частности:

w = 0, z = exp(j0) = 1,

w =¥, z = exp(jp) = -1

Деформация частотной шкалы. Реальное отображение передаточных функций фильтров является непрерывным (в силу своей физической сущности) и для упрощения дальнейших расчетов обычно задается в аналитической форме в комплексной р-плоскости по частотному аргументу ω от -¥ до +¥. При билинейном z-преобразовании происходит нелинейное искажение шкалы частот: полный частотный диапазон от - ¥ до ¥ непрерывных функций в р-плоскости сжимается до главного частотного диапазона от -p/Dt до p/Dt дискретных функций в z-плоскости. При задании уравнений непрерывных передаточных функций в частотной области это должно сопровождаться соответствующей обратной деформацией частотной шкалы, которая будет скомпенсирована при билинейном z-преобразовании. Подставляя в (6.3.2) z = exp(-jwDt) и умножая числитель и знаменатель правой части полученного уравнения на exp(jwDt/2), получим:

p = (2/Dt)[exp(jwDt/2)-exp(-jwDt/2)] / [exp(jwDt/2)+exp(-jwDt/2)],

p = (2/Dt) th(jwDt/2). (6.3.5)

Обозначим шкалу частот в р-области через индекс wд (деформированная) и, полагая p = jwд , с учетом тождества th(x) = - jtg(jx), получаем:

wд = (2/Dt) tg(wDt/2) = g tg(wDt/2), -p/Dt<w<p/Dt. (6.3.6)

Выражение (6.3.6) позволяет осуществлять переход от фактических частот w главного частотного диапазона, которым должен соответствовать оператор РЦФ, к деформированным частотам wд комплексной p-плоскости, на которой можно задавать требуемую форму передаточной функции проектируемого фильтра, при этом аппроксимация передаточных функций, учитывая область существования w от -¥ до ¥, может производиться многочленами и рациональными функциями. Связь частот приведена на рис. 6.3.2 (в начальной части p пространства деформированных частот).

Рис. 6.3.2. Деформация частоты.