Основные характеристики и свойства проводниковых материалов
Классификация и области использования проводниковых материалов
РАЗДЕЛ 2 ПРОВОДНИКОВЫЕ МАТЕРИАЛЫ (лекции 2-3) 4 часа
2.1.1 Определение проводниковых материалов
Проводник — тело, в котором имеются свободные носители заряда, то есть заряженные частицы, которые могут свободно перемещаться внутри этого тела.
К проводниковым материалам относятся:
Ø металлы и их сплавы;
Ø расплавленные металлы;
Ø электролиты;
Ø сверхпроводники;
Ø криопроводники.
Среди наиболее распространённых твёрдых проводников известны металлы, полуметаллы, углерод (в виде угля и графита). Пример проводящих жидкостей при нормальных условиях — ртуть, электролиты, при высоких температурах — расплавы металлов. Пример проводящих газов — ионизированный газ (плазма). Некоторые вещества, при нормальных условиях являющиеся изоляторами, при внешних воздействиях могут переходить в проводящее состояние, а именно проводимость полупроводников может сильно варьироваться при изменении температуры, освещённости, легировании.
2.1.2 Классификация проводниковых материалов
Проводники бывают первого и второго рода. К проводникам первого рода относят те проводники, в которых имеется электронная проводимость (посредством движения электронов). К проводникам второго рода относят проводники с ионной проводимостью (электролиты).
2.1.3 Области использования проводниковых материалов как ЭТМ
Проводниковые материалы находят применение в качестве проводов и жил кабелей, термоэлементов, припоев, предохранителей, нагревателей, для изготовления резисторов.
С точки зрения использования проводниковых материалов в электротехнике и радиоэлектронике их главными свойствами являются:
ü удельная проводимость, или обратная ей величина - удельное сопротивление;
ü зависимость удельной проводимости или сопротивления от температуры;
ü коэффициент теплопроводности;
ü механическая прочность при растяжении, сжатии, изгибе, сдвиге, кручении и др. нагрузках.
2.2.1 Механические свойства проводниковых материалов (твердость, прочность, пластичность и ударная вязкость).
Механические свойства - это комплекс свойств, отражающих способность материала противодействовать деформации под действием приложенных сил.
Деформация – это изменение формы и размера изделия. Она бывает растягивающей, сжимающей и сдвиговой.
Механические свойства в основном отражают способность материала сопротивляться пластической деформации и характеризуют его поведение в ходе её развития.
К механическим свойствам относят: твердость, прочность, пластичность и ударную вязкость.
Свойство материала противостоять деформации при локальном контакте называется твердостью.
Замер твердости производится при помощи специальных приборов твердомеров.
Существует множество шкал твердости. Например шкала Мооса. Она применяется в основном для минералов. По ней выбраны десять материалов, каждый из ряда царапает все нижележащие и царапается вышележащими. Наибольшую твердость имеет алмаз, затем идет корунд и т.д. Нефрит имеет пятую позицию, сталь, в зависимости от закалки и типа - пятую или шестую. Известняк - третью.
Другие шкалы: Бринелля, Роквелла, Виккерса и т.д. основаны на вдавливании в материал шарика или алмазной призмы и измерении размеров полученной ямки. Далее по специальным таблицам определяют соответствующую твердость.
Бринелль (шарик), Роквелл (алмазный конус, может быть и шарик), Виккерс (четырехгранная пирамидка)
Прочность характеризует сопротивление материала пластической деформации под действием приложенной силы.
Характеристиками прочности являются условные числа – пределы, находимые при механических испытаниях.
Предел прочности или временное сопротивление sв -напряжение, соответствующее максимальной нагрузке.
Предел упругости (s0.05) - напряжение, при котором остаточная деформация не превышает 0.05%.
Предел текучести (s0.2) - напряжение, при котором происходит удлинение до 0.2% без увеличения нагрузки.
Пластичностью называется способность материала к пластической деформации. Ее характеристиками являются относительное удлинение δ (%) и относительное сужение Ψ (%), которые вычисляются по формулам:
Ударная вязкость материала показывает его способность сопротивляться разрушению при ударном приложении нагрузки. Она оценивается по результатам ударного разрушения на маятниковом копре специального брусчатого образца с надрезом. При этом ударная вязкость KCU вычисляется как результат деления затраченной на разрушение образца работы А на его рабочее сечение F: KCU = A/F
2.2.2 Тепловые свойства металлических проводниковых материалов (тепловое расширение, теплопроводность, теплоемкость, теплота и температура плавления, термоэлектродвижущая сила, температурный коэффициент линейного расширения)