Структурные средние
Наиболее часто используемыми в экономической практике структурными средними являются мода и медиана. Мода представляет собой значение изучаемого признака, повторяющееся с наибольшей частотой. Медианой называется значение признака, приходящееся на середину ранжированной (упорядоченной) совокупности.
Главное свойство медианы заключается в том, что сумма абсолютных отклонений значений признака от медианы меньше, чем от любой другой величины:
Рассмотрим определение моды и медианы по не сгруппированным данным.
Предположим, что 9 торговых фирм города реализуют товар А по следующим оптовым ценам (тыс. руб.).
4,4 4,3 4,4 4,5 4,3 4,3 4,6 4,2 4,6
Так как чаще всего встречается цена 4,3 тыс. руб., то она и будет модальной.
Для определения медианы необходимо провести ранжирование:
4,2 4,3 4,3 4,3 4,4 4,4 4,5 4,6 4,6
Центральной в этом ряду является цена 4,4 тыс. руб., следовательно, данная цена и будет медианой. Если ранжированный ряд включает четное число единиц, то медиана определяется как средняя из двух центральных значений.
Если мода отражает типичный, наиболее распространенный вариант значения признака, то медиана практически выполняет функции средней для неоднородной, не подчиняющейся нормальном закону распределения совокупности. Она также используется в тех случаях, когда средняя не позволяет объективно оценить исследуемую совокупность вследствие сильного влияния максимальных и минимальных значений. Проиллюстрируем познавательное значение медианы следующим примером.
Допустим, нам необходимо дать характеристику среднего дохода группы людей, насчитывающей 100 человек, из которых 99 имеют доходы в интервале от 100 до 1000 $ в месяц, а месячные доходы последнего составляют 50000 $:
№ п/п 1 2 3 4 … 50 51 … 99 100
Доход 100 104 104 107 … 162 164 … 200 50000
($)
Если мы воспользуемся средней арифметической, то получим средний доход, равный примерно 600-700 $, который не только в несколько раз меньше дохода 100-го человека, но и имеет мало общего с доходами остальной части группы. Медиана же, равная в данном случае 163 $, позволит дать объективную характеристику уровня доходов 99% данной совокупности людей.
Рассмотрим определение моды и медианы по сгруппированным данным (рядам распределения).
Предположим, распределение торговых предприятий города по уровню розничных цен на товар А имеет следующий вид:
Цена, руб. | Число торговых предприятий |
Всего |
Определение моды по дискретному вариационному ряду не составляет большого труда – наибольшую частоту (60 предп.) имеет цена 55 руб., следовательно, она и является модальной.
Для определения медианного значения признака по следующей формуле находят номер медианной единицы ряда:
(6.16.)
где n – объем совокупности.
В нашем случае
Полученное дробное значение, всегда имеющее место при четном числе единиц в совокупности, указывает, что точная середина находится между 95 и 96 предприятиями. Необходимо определить, в какой группе находятся предприятия с этими порядковыми номерами. Это можно сделать, рассчитав накопленные частоты. Очевидно, что магазинов с этими номерами нет в первой группе, где всего лишь 12 торговых предприятий, нет их и во второй группе (12+48=60). 95-ое и 96-ое предприятия находятся в третьей группе (12+48+56=116) и, следовательно, медианой является цена 54 руб.
В отличие от дискретных вариационных рядов определение моды и медианы по интервальным рядам требует проведение отдельных расчетов на основе следующих формул:
(6.17.)
где - нижняя граница модального интервала (модальным называется интервал, имеющий наибольшую частоту);
i – величина модального интервала;
- частота модального интервала;
- частота интервала, предшествующего модальному;
- частота интервала, следующего за модальным.
и
(6.18.)
где - нижняя граница медианного интервала (медианным называется первый интервал, накопленная частота которого превышает половину общей суммы частот);
i – величина медианного интервала;
- накопленная частота интервала, предшествующая медианному;
- частота медианного интервала.
Проиллюстрируем применение этих формул, используя данные таблицы 6.5.
Информация, подобная представленной в этой таблице, необходима для получения четкого представления о покупательной способности населения страны или региона, для оценки эластичности спроса и, в конечном итоге, для выбора того или иного метода ценообразования и обоснования окончательной цены на товар.
Таблица 6.5.