СУТЬ ПнДФО ТА ВИЗНАЧЕННЯ ОСНОВНИХ ТЕРМІНІВ.

7.

6.

5.

4.

3.

2.

1.

Тема: “Психофизиология организации поведенческого акта”.

Лекция № 24.

План:

  1. Активность – реактивность.
  2. Теория функциональных систем.
  3. Системная детерминация активности нейрона.
  4. Среда и целенаправленное поведение.
  5. Проблема и задачи системной психофизиологии.
  6. Системогенез.
  7. Формирование индивидуального поведения.

 

В качестве основного методологического принципа, определяющего подход к исследованию закономерностей организации поведения и деятельности, рассматривается реактивность - активность. Основное различие между двумя парадигмами: "реактивность" (поведение, причина которого кроется вне организма) и "активность" (поведение, причина которого находиться внутри организма) состоит, в том, куда на временной шкале "помещается" детерминанта текущего поведения - в прошлое или будущее.

Использование принципа реактивности базируется на идеях Рене Декарта: организм может быть изучен, как машина, основной принцип действия которой - рефлекс, обеспечивающий связь между стимулом и ответом. Животные при этом оказывались живыми машинами, и крики боли животных рассматривались как "скрип несмазанных машин". Человека, тело которого - машина, наличие души освободило от автоматического реагирования. Душа его состоит из разумной субстанции, отличной от материи тела, и может влиять на последнее через эпифиз.

С рефлекторных позиций события, лежащие в основе поведения, в общем, представляются как линейная последовательность, начинающаяся с действия стимулов на рецепторные аппараты и заканчивающаяся ответным действием (П.К.Анохин).

Рассмотрение поведения и деятельности как активности, включает понимание активности как принципиального свойства живой материи; конкретная форма проявления активности зависит от уровня организации этой материи. Так, J. von Uexkull полагал, что поведение должно быть рассмотрено не как линейная последовательность событий, начинающаяся с возбуждения рецепторов, а как функциональное кольцо. Дж. Гибсон считал, что среда и организм не являются отдельностями, но образуют функциональное единство, к анализу которого принцип стимул-реакция не может быть применен.

Парадигмам активности и реактивности соответствуют принципиально различающиеся способы описания поведения и деятельности:

1) Целенаправленность - преобразованная в процессе эволюции реактивность. Люди ведут себя целенаправленно, а животные - отвечают на стимулы.

2) Целенаправленность - преобразованная в процессе индивидуального развития реактивность. В пренатальном периоде и на ранних стадиях постнатального онтогенеза организмы реагируют на стимулы. Лишь на более поздних этапах индивидуального развития у них формируется целенаправленное поведение.

3) На высших уровнях организации деятельности, психических процессов, поведения, движения действует принцип активности, целенаправленности, а на низших - реактивности. Целостный организм осуществляет целенаправленное поведение, а его отдельный элемент - нейрон реагирует на стимул.

4) Нейроны центральных структур пластичны, их активность зависит от поведенческого контекста, мотивации, цели и т.д. Периферические элементы ригидны и являются лишь преобразователями энергии внешних воздействий в импульсные коды или исполнителями центральных команд.

Последовательное развитие системного подхода заставило отказаться от представления о реактивности не только на организменном, но и на клеточном уровне в пользу представлений об активности и целенаправленности, что, в свою очередь, обусловило существенное изменение методологии, задач и методов объективного исследования субъективного мира и привело к формированию нового направления в психологии - системной психофизиологии. Которая развивает теорию функциональных систем (ТФС), разработанную академиком П.К.Анохиным (1898-1974) и его школой.

 

В русле системного подхода поведение рассматривается как целостный, определенным образом организованный процесс, направленный на адаптацию организма к среде и на активное ее преобразование, связанное с изменениями внутренних процессов что всегда носит целенаправленный характер, обеспечивающий организму нормальную жизнедеятельность. П.К.Анохин - компенсация мобилизует значительное число различных физиологических компонентов - центральных и периферических образований, функционально объединенных между собой для получения полезного приспособительного эффекта, необходимого живому организму в данный конкретный момент времени. Такое широкое функциональное объединение различно локализованных структур и процессов для получения конечного приспособительного результата было названо “функциональной системой”. ФУНКЦИОНАЛЬНАЯ СИСТЕМА (ФС) - это организация активности элементов различной анатомической принадлежности, имеющая характер взаимосодействия, которое направлено на достижение полезного приспособительного результата. ФС рассматривается как единица интегративной деятельности организма. Поскольку для любого живого организма количество возможных поведенческих ситуаций в принципе неограниченно, то, следовательно, одна и та же нервная клетка, мышца, часть какого либо органа или сам орган могут входить в состав нескольких функциональных систем, в которых они будут выполнять разные функции. Таким образом, при изучении взаимодействия организма со средой единицей анализа выступает целостная, динамически организованная функциональная система.

ТИПЫ И УРОВНИ СЛОЖНОСТИ ФС. Функциональные системы имеют разную специализацию. Одни осуществляют дыхание, другие отвечают за движение, третьи за питание и т.п. ФС могут принадлежать к различным иерархическим уровням и быть разной степени сложности: одни из них свойственны всем особям данного вида (и даже других видов), например функциональная система сосания. Другие индивидуальны, т.е. формируются прижизненно в процессе овладения опытом и составляют основу обучения. Функциональные системы различаются по степени пластичности, т.е. по способности менять составляющие ее компоненты. Например, ФС дыхания состоит преимущественно из стабильных (врожденных) структур и поэтому обладает малой пластичностью: в акте дыхания, как правило, участвуют одни и те же центральные и периферические компоненты. В то же время ФС, обеспечивающая движение тела, пластична и может достаточно легко перестраивать компонентные взаимосвязи (до чего-то можно дойти, добежать, допрыгать, доползти).

Результат деятельности и его оценка занимают центральное место в ФС. Достичь результата - значит изменить соотношение между организмом и средой в полезном для организма направлении. Достижение приспособительного результата в ФС осуществляется с помощью специфических механизмов:

1) Афферентный синтез всей поступающей в нервную систему информации. Начальную стадию поведенческого акта любой степени сложности, а, следовательно, и начало работы ФС составляет афферентный синтез. Важность афферентного синтеза состоит в том, что эта стадия определяет все последующее поведение организма. Задача этой стадии собрать необходимую информацию о различных параметрах внешней среды. Благодаря афферентному синтезу из множества внешних и внутренних раздражителей организм отбирает главные и на их основе создает цель поведения. Поскольку на выбор такой информации оказывает влияние как цель поведения, так и предыдущий опыт жизнедеятельности, то афферентный синтез всегда индивидуален. На этой стадии происходит взаимодействие трех компонентов: мотивационного возбуждения, обстановочной афферентации (т.е. информации о внешней среде) и извлекаемых из памяти следов прошлого опыта. В результате обработки и синтеза этих компонентов принимается решение о том, “что делать” и происходит переход к формированию программы действий, которая обеспечивает выбор и последующую реализацию одного действия из множества потенциально возможных. Команда, представленная комплексом эфферентных возбуждений, направляется к периферическим исполнительным органам и воплощается в соответствующее действие.

Важной чертой ФС являются ее индивидуальные и меняющиеся требования к афферентации. Именно количество и качество афферентных импульсаций характеризует степень сложности, произвольности или автоматизированности функциональной системы

2) Принятие решения с одновременным формированием аппарата прогнозирования результата в виде афферентной модели - акцептора результатов действия - центральный аппарат оценки результатов и параметров еще несовершившегося действия. Таким образом, еще до осуществления какого-либо поведенческого акта у живого организма уже имеется представление о нем, своеобразная модель или образ ожидаемого результата. В процессе реального действия от “акцептора” идут эфферентные сигналы к нервным и моторным структурам, обеспечивающим достижение необходимой цели. Об успешности или неуспешности поведенческого акта сигнализирует поступающая в мозг эфферентная импульсация от всех рецепторов, которые регистрируют последовательные этапы выполнения конкретного действия (обратная афферентация).

3) Собственно действие.

4) Сличение на основе обратной связи афферентной модели акцептора результатов действия и параметров выполненного действия.

5) Коррекция поведения в случае рассогласования реальных и идеальных (смоделированных нервной системой) параметров действия.

ОСНОВНЫЕ ПРИЗНАКИ ФС:

1) ФС является центрально-периферическим образованием, конкретный аппарат саморегуляции. Она поддерживает свое единство на основе циркуляции информации от периферии к центрам и от центров к периферии.

2) Существование ФС связано с существованием четко очерченного приспособительного эффекта. Именно этот конечный эффект определяет то или иное распределение возбуждения и активности по ФС в целом.

3) Наличие рецептурных аппаратов, оценивающих результаты действия ФС. (врожденные и выработанными в процессе жизни).

4) Каждый приспособительный эффект ФС, т.е. результат какого-либо действия, совершаемого организмом, формирует поток обратных афферентаций, достаточно подробно представляющий все наглядные признаки (параметры) полученных результатов. В том случае, когда при подборе наиболее эффективного результата эта обратная афферентация закрепляет наиболее успешное действие, она становится “санкционирующей” (определяющей) афферентаций.

5) Функциональные системы, на основе которых строится приспособительная деятельность новорожденных животных к характерным для них экологическим факторам, обладают всеми указанными выше чертами и архитектурно оказываются созревшими к моменту рождения. Из этого следует, что объединение частей ФС (принцип консолидации) должно стать функционально полноценным на каком-то сроке развития плода еще до момента рождения.

ЗНАЧЕНИЕ ТЕОРИИ ФС:

1) произошла замена упрощенного понимания стимула как единственного возбудителя поведения более сложными представлениями о факторах, определяющих поведение, с включением в их число моделей потребного будущего или образа ожидаемого результата. Наличие пускового стимула не является достаточным для возникновения адекватного поведения. Оно возникает а) после обучения, т.е. при наличии соответствующего материала памяти, б) при наличии соответствующей мотивации и в) в соответствующей обстановке.

2) было сформулировано представление о роли “обратной афферентации” и ее значении для дальнейшей судьбы выполняемого действия, последнее радикально меняет картину, показывая, что все дальнейшее поведение зависит от успехов выполненного действия.

3) было введено представление о новом функциональном аппарате, осуществляющим сличение исходного образа ожидаемого результата с эффектом реального действия - “акцептор” результатов действия.

Тем самым П.К. Анохин вплотную подошел к анализу физиологических механизмов принятия решения, ставшим одним из важнейших понятий современной психофизиологии. Теория ФС представляет образец отказа от тенденции сводить сложнейшие формы психической деятельности к изолированным элементарным физиологическим процессам и попытку создания нового учения о физиологических основах активных форм психической деятельности. На основе теории Анохина В.М. Русалов предложил новую концепцию темперамента (1989, 1991), а В.Д. Шадриков (1994, 1997) и В.Н. Дружинин (1990, 1998) разрабатывают теорию способностей.

С позиций парадигмы реактивности поведение индивида представляет собой реакцию на стимул. В основе реакции лежит проведение возбуждения по рефлекторной дуге: от рецепторов через центральные структуры к исполнительным органам. Нейрон при этом оказывается элементом, входящим в рефлекторную дугу, а его функция - обеспечением проведения возбуждения. Нейрон, как и организм, реагирует на стимулы. В качестве стимула выступает импульсация, которую нейрон получает от других клеток, в качестве реакции - следующая за синаптическим притоком импульсация данного нейрона. Интегративной деятельности нейрона (за Анохиным): возбуждающие и тормозные постсинаптические потенциалы, возникающие на мембране постсинаптического ("получающего") нейрона под действием пресинаптической импульсации за счет изменения ионных градиентов, суммируясь, действуют на генераторный пункт нейрона, продуцирующий распространяющиеся потенциалы действия – импульсы.

С позиций активности: нейрон, как и любая живая клетка, реализует генетическую программу, нуждаясь в метаболитах, поступающих к нему от других клеток (В.Б.Швырков). В связи с этим последовательность событий в деятельности нейрона становится аналогичной той, которая характеризует активный целенаправленный организм, а его импульсация - аналогичной действию индивида. Активность нейрона, как и поведение организма, является не реакцией, а средством изменения соотношения со средой, "действием", которое обусловливает устранение несоответствия между "потребностями" и микросредой, в частности, за счет изменения синаптического притока. Это изменение, если оно соответствует текущим метаболическим "потребностям" нейрона, приводит к достижению им "результата" и прекращению активности. Предполагается, что несоответствие между "потребностями", определяемыми генетически, и реально поступающими метаболитами может иметь место как при генетически обусловленных изменениях метаболизма клетки, так и при изменении притока метаболитов от других клеток. Таким образом, нейрон - не "кодирующий элемент", "проводник" или "сумматор", а организм в организме, обеспечивающий свои "потребности" за счет метаболитов, поступающих от других элементов.

"Действие" нейрона, его импульсная активность, не только влияет на его микросреду, но изменяет и сам импульсирующий нейрон. Здесь опять можно провести аналогию с индивидом. Когда человек протягивает руку к яблоку, он не только приближает ее к объекту-цели, но и готовит себя к контакту с яблоком: изменяет позу, суставные углы рабочей конечности в зависимости от положения яблока, его пальцы конфигурируются в соответствии с размером яблока, рецепторы претерпевают эфферентные влияния (см.), связанные с предвидением будущего контакта тела с объектом-целью и т.д. Что касается изменения состояния нейрона при его "действии", уже давно было известно, что "следовые", постспайковые процессы (такие как изменение поляризации, ионной проницаемости) играют существенную роль в регуляции чувствительности нейрона к последующему притоку.

Аристотель рассматривал получение удовольствия как главную цель поведения. "Удовольствие" для нейрона - возбуждение, а "неудовольствие" - торможение. Активация нейрона - "действие", обеспечивающее получение им возбуждения. Нейрон является гетеростатом, т.е. системой, направленной на максимизацию "удовольствия", т.е. возбуждения. "Токсическое перевозбуждение" (excitotoxic)- сильное возбуждение нейронов рассматривается как причина их гибели. (Сложнейшие механизмы изменения "белкового фенотипа" оказываются направленными, например, на изменение чувствительности постсинаптической мембраны к пресинаптическому возбуждению).

"Потребности" нейрона определяются необходимостью синтеза новых молекул = белков, расходуемых в процессе жизнедеятельности ("типичная" белковая молекула разрушается в среднем через два дня после того, как она была синтезирована), или обеспечивающих структурные перестройки нейрона, имеющие место при обучении. Для этого, в том случае, если в клетке нет соответствующей информационной РНК, направляющей синтез белка в цитоплазме, экспрессируются (становятся активными, "выраженными") гены, среди которых выделяют гены "домашнего хозяйства" (универсальные "потребности" клеток), гены "роскоши" (специфические "потребности" клетки) или "ранние" и "поздние" гены, экспрессируемые на последовательных стадиях формирования памяти, и т.д. Как предполагается, именно усложнение процессов регуляции экспрессии генов, а не их числа определяет эволюционное усложнение живых систем. Различие в экспрессии, а не потеря или приобретение генов, определяют различие специализации клеток организма. Особенно велики эти различия для клеток мозга, в которых экспрессируются десятки тысяч уникальных для мозга генов. Считается, что метаболическая гетерогенность нейронов, обусловленная генетически и зависящая от условий индивидуального развития, т.е. являющаяся результатом взаимодействия фило- и онтогенетической памяти, лежит в основе разнообразия функциональной специализации нейронов, определяет специфику их участия в обеспечении поведения.

 

С позиций парадигмы активности: из среды активно "отбирается" индивидом то, что может быть использовано для достижения цели, причем, число объектов, которые может различить индивид, равно числу функций, которые он может реализовать. Анализ среды как обеспечивающей активность индивида в ней, дано в теории affordance Дж. Гибсона. Эффордансы - это то, что окружающий мир предоставляет, разрешает совершить индивиду. Эффордансы нельзя предъявить индивиду, т.к. они не являются стимулами. Можно лишь обеспечить их наличие. Автор считает, что индивид соотносится не с миром, описываемым в физических терминах, а с экологическим миром. Он понимает экологические нишу вида как набор эффордансов. Описание экологического мира определяется тем, какие акты в нем может совершить индивид. Понятие эффорданс подразумевает взаимодополнительность мира и индивида. Дж. Гибсон отмечает, что понимает под ним "нечто, относящиеся одновременно и к окружающему миру, и к животному таким образом, который не передается ни одним из существующих терминов" (Гибсон 1988, с.188). При этом оказывается, что среда дробится тем или иным образом в соответствии с опытом совершения индивидом тех или иных поведенческих актов на протяжении его индивидуального развития. Индивид отражает не внешний мир как таковой, а историю своих соотношений с миром. Описание среды индивидом основано на оценках его соотношения с объектами-целями поведенческих актов, т.е. на оценках результатов. Образно говоря, можно рассматривать жизнь индивида как "ассимиляцию" экологического мира, превращающую для индивида экологический мир в мир результатов. Продолжая данную логику, можно заключить, что среда представлена для индивида результатами реализованных актов.

При изменении цели поведения, реализуемого животным, рецептивное поле нейрона может изменяться по свойствам или даже "исчезать". Так, при сравнении активности одного и того же нейрона "сенсорных" областей коры мозга в разных поведенческих актах обнаруживается, что активация данного нейрона (повышение частоты его импульсной активности) может возникать при контакте объектов среды с соответствующей рецептивной поверхностью в одном поведении, но не в другом - "исчезновение" рецептивного поля. Эфферентные влияния отражают процесс согласования активности периферических и центральных нейронов. Этот процесс необходим потому, что только их совместная активность (взаимосодействие) как в условиях контакта со средой специфической модальности, так и вне его может обеспечить достижение результата, а, следовательно, и удовлетворить "потребности" метаболизма клеток обеих групп.

Широкое внедрение системного подхода в физиологию изменило методологию и логику научных исследований. В настоящее время большинство нейрофизиологов считает, что мозг представляет собой “сверхсистему”, состоящую из множества систем и сетей взаимосвязанных нервных клеток. Причем выделяется два уровня существования систем (микроуровень и макроуровень) и соответственно два типа систем: микро- и макросистемы (Бехтерева ,1999). Микроуровень представляет совокупность популяций нервных клеток, осуществляющих относительно элементарные функции. Примером микросистемы может служить нейронный модуль - вертикально организованная колонка нейронов и их отростков Одинаковые по своим функциям модули объединяются в макросистемы. Микросистемы сопоставимы с отдельными структурными образованиями мозга. Например, отдельные зоны коры больших полушарий, имеющие разное клеточное строение (цитоархитектонику), представляют разные макросистемы. Независимо от того, какой уровень представляет система микро - или макро, единым является общий принцип взаимодействия: при объединении (консолидации) элементов в систему возникают качества или свойства, не присущие отдельным элементам. В консолидированной системе изменение одного из элементов влечет за собой изменения всех остальных элементов, а, следовательно, и системы в целом.

Системная психофизиология ставит своей задачей изучение систем и межсистемных отношений, составляющих и обеспечивающих психику и поведение человека. Согласно мнению авторов этой концепции, системное решение психофизиологической проблемы обеспечивается за счет информационного сопоставления психических и нейрофизиологических процессов. При этом психические процессы отвечают за поведение организма как целого. В то же время нейрофизиологические процессы протекают на уровне отдельных элементов (нейронов и нейронных сетей). Таким образом, психические явления сопоставляются не с элементарными физиологическими явлениями, а только с процессами их организации.

 

Нейрон системоспецифичен - специализация нейронов относительно вновь формируемых систем постоянна. В настоящее время обнаружены нейроны, специализированные относительно самых разнообразных элементов опыта: актов использования определенных слов у людей, актов "социального контакта" с определенными особями в стаде у обезьян, актов инструментального поведения у кроликов, актов ухода за новорожденными ягнятам у овец и т.д.

В мозгу формируются группы нейронов (принцип селекции по Эдельмену), каждая из которых по-своему активируется при определенных изменениях внешней среды.. Когда происходит определенное изменение среды, оно приводит к отбору из числа имеющихся такой группы, которая, может обеспечить надлежащую реакцию. Изменение среды и группа могут считаться соответствующими друг другу в том случае, если клетки последней отвечают на данное изменение более или менее специфично. Селекция имеет место уже при созревании мозга в раннем онтогенезе, в процессе которого множество (50% и более) нейронов гибнет. Отобранные же клетки составляют первичный ассортимент. Вторичный ассортимент формируется в результате селекции, происходящей в процессе поведенческого взаимодействия со средой. Селекция нейронов из "резерва" (ранее молчавших, неактивных клеток) зависит от их индивидуальных свойств, т.е. от особенностей их метаболических "потребностей". Можно полагать, что именно нарастание разнообразия метаболических "потребностей" нейронов обусловливает филогенетическое усложнение поведения: белковый и пептидный состав нейронов усложняется в филогенезе.

Начальным звеном каскада молекулярно-биологических процессов, обусловливающих морфологические модификации нейронов как в процессе морфогенеза (ранний онтогенез), так и при консолидации формируемой в процессе научения памяти, является активация (экспрессия) "ранних" генов. Активация "ранних" генов довольно краткосрочный процесс (занимает около 2 часов), сменяемый второй волной экспрессии - "поздних" генов; в составе второй волны активируются морфорегуляторные молекулы, имеющие отношение к морфологическим модификациям нейрона (К.В. Анохин 2001). Активация "ранних" генов у взрослого индивида имеет место не только при научении, но и при поражениях нервной системы, повреждениях тела, голоде, стрессе и т.д. Общим для всех этих ситуаций является то, что ранее сформированные способы согласования метаболических "потребностей" нейронов оказываются неэффективными. Поиск новых путей согласования включает как модификации на уровне поведенческих адаптаций, так и молекулярно-генетические и морфологические перестройки.

Нейрон может обеспечить "потребности" своего метаболизма, объединяясь с другими элементами организма в функциональную систему. Поэтому, как в норме (научение), так и в патологии (например, восстановление после инсультов, травматических, опухолевых и т.п. поражений мозга), когда проблему согласования "потребностей" нельзя решить с использованием имеющихся у индивида способов согласования (т.е. в рамках имеющегося у индивида опыта) развертываются процессы системогенеза. В случае если процессы системогенеза протекают успешно, формируются новые системы, устанавливаются новые межнейронные соотношения, обеспечиваемые морфологическими перестройками (в основе которых - активация генетического аппарата) и обеспечивающие удовлетворение метаболических "потребностей" нейронов, а, следовательно, и их выживание. Если же нет - рассогласование между "потребностями" нейронов и их микросредой не устранено, нейроны гиперактивны, экспрессия "ранних" генов затягивается: одна волна экспрессии сменяет другую. В этих случаях в нейронах могут экспрессироваться так называемые гены "смерти", активация которых ведет к гибели нервных клеток. В рамках такого представления множественные повторные волны экспрессии "ранних" генов на начальных стадиях онтогенеза (L.Kaczmarek, A. Chaudhuri 1997) возможно связать не только с интенсивным морфогенезом и формированием все новых поведенческих актов (у многих животных за первые недели постнатального онтогенеза формируется больше половины актов всего поведенческого репертуара; см. в. Ю.И. Александров 1989), но и с гибелью в этот период 50% или более из появляющихся нервных клеток. Можно предположить, что в случаях, когда индивид оказывается в "неизбегательной" ситуации (что в субъективном плане может вести к депрессивному состоянию) или в ситуации обучения долго не способен решить очень сложную проблему также имеет место нарастание частоты смерти нейронов.

 

Осуществление поведения обеспечивается реализацией не только новых систем, сформированных при обучении актам, составляющим это поведение, но и одновременной реализацией множества более старых систем Таким образом, новая система оказывается "добавкой" к ранее сформированным, "наслаиваясь" на них. В связи с этим появление клеток новой специализации приводит к увеличению общего числа активных в поведении клеток, а не к уменьшению числа нейронов старых специализаций. При обучении происходит увеличение числа активных клеток, вовлечение новых нейронов, а не переобучение старых.

Первые функциональные системы, реализация которых характеризуется разнообразными "генерализованными" и "локальными" движениями и соотносит плод и его среду как целое, появляются уже на стадии пренатального онтогенеза. Движения плода рассматриваются как имеющие приспособительное значение и способствующие полноценному внутриутробному развитию. В связи с движениями плода наблюдаются изменения в активности ряда мозговых структур матери, а также повышение тонуса мышц матки, отражающееся на кровотоке в ней и выступающее в качестве фактора, обеспечивающего отмеченную интенсификацию пупочно-плацентарного кровотока. В том случае, если концентрация питательных веществ в среде, с которой контактирует плод, повышается (потребление пищи или введение матери раствора глюкозы), частота движений плода падает, а при голодании матери, наоборот - возрастает. Таким образом, двигательная активность может быть рассмотрена как форма поведения (в частности, пищевого) плода. Даже дыхательные движения плода являются не "тренировкой" будущего дыхания, но приспособлением к текущим условиям внутриутробного существования. На стадии постнатального развития анализируемые "системы движений" не являются уже подобными самостоятельными актами, а лишь "обслуживают" достижение более дифференцированных результатов целостных поведенческих актов, включаясь во множества систем, их реализующих.

Рецептивные поля и "корковые карты" могут модифицироваться в течение всей жизни, хотя объем этих модификаций в разном возрасте может быть разным. Так показано, что представительство пальцев левой руки у музыкантов, играющих на струнных инструментах, расширено, по сравнению с контролем, тем сильнее, чем в более раннем возрасте началось обучение игре - проекция индивидуального опыта на структуры мозга. Нейроны новых специализаций максимально представлены в коре мозга и в меньшей степени или совсем отсутствуют в ряде филогенетически древних и периферических структур. Нейроны же более старых специализаций в значительном числе представлены в корковых, как и в других структурах. "Закон разложения" Т.Рибо: при остром введении алкоголя доля активных нейронов, принадлежащих к новым системам, падает за счет избирательного подавления активности этих нейронов, в особенности клеток, лежащих в верхних (II - IV) слоях коры. Эти слои являются более филогенетически молодыми, чем нижние и их развитие в эволюции связывается с усложнением психической деятельности - повышенная чувствительность нейронов новых систем.

Структура индивидуальности человека с позиций системного подхода включает такие уровни (К.К.Платонов): сомато-морфологический = биохимический = физиологический; психологический (процессуальную психическую индивидуальность, в известной степени, общую у человека и животных, и содержательная психическая индивидуальность, являющуюся продуктом его взаимодействия с миром); психический уровень - это социально-психологическая индивидуальность, свойственная только человеку. Физиологический и психологический (а также все другие) уровни действуют в тесной взаимосвязи, совместно определяя специфические особенности каждого уровня.

Важной единицей функциональной активности ЦНС считается элементарная нейронная сеть. По характеру организации в нервной системе чаще всего выделяют три типа сетей: иерархические, локальные и дивергентные. Первые характеризуются свойствами конвергенции (несколько нейронов одного уровня контактируют с меньшим числом нейронов другого уровня) и дивергенции (нейрон нижележащего уровня контактирует с большим числом клеток вышележащего уровня). Благодаря этому информация может многократно фильтроваться и усиливаться. Наиболее характерен такой тип сетей для строения сенсорных и двигательных путей. Сенсорные системы организованы по принципу восходящей иерархии: информация поступает от низших центров к высшим. Двигательные, напротив, организованы по принципу нисходящей иерархии: из высших корковых центров команды поступают к исполнительным элементам (мышцам). Иерархические сети обеспечивают очень точную передачу информации, однако, выключение хотя бы одного звена (например, в результате травмы) приводит к нарушению работы всей сети. В локальных сетях поток информации удерживается в пределах одного иерархического уровня, оказывая на нейроны-мишени возбуждающее или тормозящее действие, что позволяет модулировать поток информации. Таким образом, нейроны локальных сетей действуют как своеобразные фильтры, отбирая и сохраняя нужную информацию. Предполагается, что подобные сети имеются на всех уровнях организации мозга. Сочетание локальных сетей с дивергентным или конвергентным типом передачи может расширять или сужать поток информации.

Дивергентные сети характеризуются наличием нейронов, которые, имея один вход, на выходе образуют контакты с множеством других нейронов. Таким путем эти сети могут влиять одновременно на активность множества элементов, которые при этом могут быть связанны с разными иерархическими уровнями. Являясь интегративными по принципу строения, эти сети, по-видимому, выполняют централизованную регуляцию и управление динамикой информационного процесса.

ИНДЗ: психофизиология научения (теории научения; нейрофизиологические механизмы научения; этапы научения и элементы опыта; научение и структура опыта, организация мозговой активности).