Вероятность появления хотя бы одного события.

Теорема 2.4. Вероятность появления хотя бы одного из попарно независимых событий

А1, А2,…, Ап равна

р (А) = 1 – q1q2qn , (2.9)

где qiвероятность события , противоположного событию Аi .

Доказательство.

Если событие А заключается в появлении хотя бы одного события из А1, А2,…, Ап, то события А и противоположны, поэтому по теореме 2.2 сумма их вероятностей равна 1. Кроме того, поскольку А1, А2,…, Ап независимы, то независимы и , следовательно, р() = . Отсюда следует справедливость формулы (2.9).

 

Пример. Сколько нужно произвести бросков монеты, чтобы с вероятностью не менее 0,9 выпал хотя бы один герб?

Решение. Вероятность выпадения герба при одном броске равна вероятности противопо-ложного события (выпадения цифры) и равна 0,5. Тогда вероятность выпадения хотя бы одного герба при п выстрелах равна 1- (0,5)п . Тогда из решения неравенства 1- (0,5)п > 0,9

следует, что п > log210 ≥ 4.