Изобразить схему замещения 3-фазного источника в случае соединения его фаз “звездой”. Привести векторную топографическую диаграмму напряжений такого источника.

Ответ: При соединение фаз обмотки генератора (или трансформатора) звездой их концы X, Y и Z соединяют в одну общую точку N, называемую нейтральной точкой (или нейтралью) (рис. 3.6). Концы фаз приемников (Za, Zb, Zc) также соединяют в одну точку n. Такое соединение называется соединение звезда.

Рис. 3.6

Провода Aa, Bb и Cc, соединяющие начала фаз генератора и приемника, называются линейными, провод Nn, соединяющий точкуN генератора с точкой n приемника, – нейтральным. Трехфазная цепь с нейтральным проводом будет четырехпроводной, без нейтрального провода – трехпроводной. В трехфазных цепях различают фазные и линейные напряжения. Фазное напряжение UФ – напряжение между началом и концом фазы или между линейным проводом и нейтралью (UA, UB, UC у источника; Ua, Ub, Uc у приемника). Если сопротивлением проводов можно пренебречь, то фазное напряжение в приемнике считают таким же, как и в источнике. (UA=Ua, UB=Ub, UC=Uc). За условно положительные направления фазных напряжений принимают направления от начала к концу фаз. Линейное напряжение (UЛ) – напряжение между линейными проводами или между одноименными выводами разных фаз (UAB, UBC, UCA). Условно положительные направления линейных напряжений приняты от точек, соответствующих первому индексу, к точкам соответствующим второму индексу (рис. 3.6).

По аналогии с фазными и линейными напряжениями различают также фазные и линейные токи: 1)Фазные (IФ) – это токи в фазах генератора и приемников. 2)Линейные (IЛ) – токи в линейных проводах. При соединении в звезду фазные и линейные токи равны: IФ=IЛ. (3.5)

Ток, протекающий в нейтральном проводе, обозначают IN. По первому закону Кирхгофа для нейтральной точки n (N) имеем в комплексной форме: İNABC. (3.6)

Рис. 3.7

В соответствии с выбранными условными положительными направлениями фазных и линейных напряжений можно записать уравнения по второму закону Кирхгофа. ÚABA−ÚB; ÚBCB−ÚC; ÚCAC−ÚA. (3.7). Согласно этим выражениям на рис. 3.7а построена векторная диаграмма, из которой видно, что при симметричной системе фазных напряжений система линейных напряжений тоже симметрична: UAB, UBC, UCA равны по величине и сдвинуты по фазе относительно друг друга на 120° (общее обозначение UЛ), и опережают, соответственно, векторы фазных напряжений UA, UB, UC, (UФ) на угол 30°. Действующие значения линейных напряжений можно определить графи-чески по векторной диаграмме или по формуле (3.8), которая следует из треугольника, образованного векторами двух фазных и одного линейного напряжений: UЛ=2UФcos30°или UЛ= UФ. (3.8) Предусмотренные ГОСТом линейные и фазные напряжения для цепей низкого напряжения связаны между собой соотношениями:

UЛ=660В;UФ=380В;
UЛ=380В;UФ=220В;
UЛ=220В;UФ=127В.

Векторную диаграмму удобно выполнить топографической (рис. 3.7б), тогда каждой точке цепи соответствует определенная точка на диаграмме. Вектор, проведенный между двумя точками топографической диаграммы, выражает по величине и фазе напряжения между одноименными точками цепи.